Strength of Anode-Supported Solid Oxide Fuel Cells

被引:19
|
作者
Faes, A. [1 ,2 ,3 ]
Frandsen, H. L. [4 ]
Kaiser, A. [4 ]
Pihlatie, M. [5 ]
机构
[1] Ecole Polytech Fed Lausanne, Ind Energy Syst Lab LENI, CH-1015 Lausanne, Switzerland
[2] Ecole Polytech Fed Lausanne, CIME, CH-1015 Lausanne, Switzerland
[3] Univ Appl Sci Western Switzerland, Design & Mat Unit, CH-1950 Sion, Switzerland
[4] Danish Tech Univ, Riso Natl Lab, Fuel Cells & Solid State Chem Dept, DK-4000 Roskilde, Denmark
[5] Tech Res Ctr Finland, FI-02044 Espoo, Finland
关键词
Ball-on-Ring Test; Ceramic Strength; Half-Cells; NiO and Zirconia Anode-Supported Fuel Cells; SOFC; Tensile Test; PARAMETERS; REDUCTION; FRACTURE; STRESS;
D O I
10.1002/fuce.201100038
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Nickel oxide and yttria doped zirconia composite strength is crucial for anode-supported solid oxide fuel cells, especially during transient operation, but also for the initial stacking process, where cell curvature after sintering can cause problems. This work first compares tensile and ball-on-ring strength measurements of as-sintered anodes support. Secondly, the strength of anode support sintered alone is compared to the strength of a co-sintered anode support with anode and electrolyte layers. Finally, the orientation of the specimens to the bending axis of a co-sintered half-cell is investigated. Even though the electrolyte is to the tensile side, it is found that the anode support fails due to the thermo-mechanical residual stresses.
引用
收藏
页码:682 / 689
页数:8
相关论文
共 50 条
  • [1] Improvement of anode-supported solid oxide fuel cells
    Wang, Z. R.
    Qian, J. Q.
    Wang, S. R.
    Cao, J. D.
    Wen, T. L.
    [J]. SOLID STATE IONICS, 2008, 179 (27-32) : 1593 - 1596
  • [2] Fabrication and performance of anode-supported solid oxide fuel cells
    Holtappels, P
    Graule, T
    Gut, B
    Vogt, U
    Gauckler, L
    Jörger, M
    Perednis, D
    Honegger, K
    Robert, G
    Rambert, S
    McEvoy, AJ
    [J]. SOLID OXIDE FUEL CELLS VIII (SOFC VIII), 2003, 2003 (07): : 1003 - 1010
  • [3] Ceramic technologies for anode-supported solid oxide fuel cells
    Tancret, F
    Schleich, DM
    [J]. HIGH-PERFORMANCE CERAMICS III, PTS 1 AND 2, 2005, 280-283 : 419 - 424
  • [4] Transient modeling of anode-supported solid oxide fuel cells
    Xie, Y.
    Xue, X.
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (16) : 6882 - 6891
  • [5] The effect of anode thickness on the performance of anode-supported solid oxide fuel cells
    Kim, JW
    Virkar, AV
    [J]. SOLID OXIDE FUEL CELLS (SOFC VI), 1999, 99 (19): : 830 - 839
  • [6] Enhancement of fuel transfer in anode-supported honeycomb solid oxide fuel cells
    Ikeda, Sou
    Nakajima, Hironori
    Kitahara, Tatsumi
    [J]. 7TH EUROPEAN THERMAL-SCIENCES CONFERENCE (EUROTHERM2016), 2016, 745
  • [7] A comprehensive CFD model of anode-supported solid oxide fuel cells
    Jeon, Dong Hyup
    [J]. ELECTROCHIMICA ACTA, 2009, 54 (10) : 2727 - 2736
  • [8] Anode-supported solid oxide fuel cells with ion conductor infiltration
    Timurkutluk, Bora
    Timurkutluk, Cigdem
    Mat, Mahmut D.
    Kaplan, Yuksel
    [J]. INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2011, 35 (12) : 1048 - 1055
  • [9] Fabrication and Performance of Ceramic Anode-supported Solid Oxide Fuel Cells
    Yang, Zhibin
    Pang, Zhaohua
    Zhu, Tenglong
    Zheng, Ziwei
    Han, Minfang
    [J]. SOLID OXIDE FUEL CELLS 13 (SOFC-XIII), 2013, 57 (01): : 549 - 554
  • [10] Isothermal models for anode-supported tubular solid oxide fuel cells
    Bhattacharyya, Debangsu
    Rengaswamy, Raghunathan
    Finnerty, Caine
    [J]. CHEMICAL ENGINEERING SCIENCE, 2007, 62 (16) : 4250 - 4267