Anode-supported solid oxide fuel cells with ion conductor infiltration

被引:31
|
作者
Timurkutluk, Bora [1 ]
Timurkutluk, Cigdem [1 ]
Mat, Mahmut D. [1 ]
Kaplan, Yuksel [1 ]
机构
[1] Nigde Univ, Dept Mech Engn, HYTEM, TR-51245 Nigde, Turkey
关键词
solid oxide fuel cell; anode supported; wet impregnation; ion conductor phase; LA0.6SR0.4CO0.2FE0.8O3; CATHODES; PERFORMANCE; SOFC; ELECTRODES;
D O I
10.1002/er.1832
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Nano ion conductor infiltration to anode andcathode side of solid oxide fuel cell (SOFC) significantly improves the performance of an SOFC. The effects of processing parameters such as molar concentration, sintering temperature and holding time are investigated. The performance of fuel cell is evaluated with a test station and an impedance analyzer. The SEM investigation showed that a nano ion conductor phase forms around the main phase in the anode and the cathode. The results showed that nano infiltration enhances significantly the performance of SOFC. The power density is found to increase around two times with infiltration. It is also found that the particle size and the porosity significantly affect the performance of infiltrated SOFC cell. While smaller infiltrated grains enhance the performance lower porosity adversely affects the performance. Copyrightr (C) 2011 John Wiley & Sons, Ltd.
引用
收藏
页码:1048 / 1055
页数:8
相关论文
共 50 条
  • [1] Effect of Nano Ion Conductor Infiltration on the Performance of Anode Supported Solid Oxide Fuel Cells
    Timurkutluk, Cigdem
    Timurkutluk, Bora
    Mat, Mahmut D.
    Kaplan, Yuksel
    Ibrahimoglu, Beycan
    Pamuk, Ibrahim
    [J]. SOLID OXIDE FUEL CELLS 11 (SOFC-XI), 2009, 25 (02): : 559 - 566
  • [2] Improvement of anode-supported solid oxide fuel cells
    Wang, Z. R.
    Qian, J. Q.
    Wang, S. R.
    Cao, J. D.
    Wen, T. L.
    [J]. SOLID STATE IONICS, 2008, 179 (27-32) : 1593 - 1596
  • [3] Strength of Anode-Supported Solid Oxide Fuel Cells
    Faes, A.
    Frandsen, H. L.
    Kaiser, A.
    Pihlatie, M.
    [J]. FUEL CELLS, 2011, 11 (05) : 682 - 689
  • [4] Fabrication and performance of anode-supported solid oxide fuel cells
    Holtappels, P
    Graule, T
    Gut, B
    Vogt, U
    Gauckler, L
    Jörger, M
    Perednis, D
    Honegger, K
    Robert, G
    Rambert, S
    McEvoy, AJ
    [J]. SOLID OXIDE FUEL CELLS VIII (SOFC VIII), 2003, 2003 (07): : 1003 - 1010
  • [5] Ceramic technologies for anode-supported solid oxide fuel cells
    Tancret, F
    Schleich, DM
    [J]. HIGH-PERFORMANCE CERAMICS III, PTS 1 AND 2, 2005, 280-283 : 419 - 424
  • [6] Transient modeling of anode-supported solid oxide fuel cells
    Xie, Y.
    Xue, X.
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (16) : 6882 - 6891
  • [7] The effect of anode thickness on the performance of anode-supported solid oxide fuel cells
    Kim, JW
    Virkar, AV
    [J]. SOLID OXIDE FUEL CELLS (SOFC VI), 1999, 99 (19): : 830 - 839
  • [8] Enhancement of fuel transfer in anode-supported honeycomb solid oxide fuel cells
    Ikeda, Sou
    Nakajima, Hironori
    Kitahara, Tatsumi
    [J]. 7TH EUROPEAN THERMAL-SCIENCES CONFERENCE (EUROTHERM2016), 2016, 745
  • [9] A comprehensive CFD model of anode-supported solid oxide fuel cells
    Jeon, Dong Hyup
    [J]. ELECTROCHIMICA ACTA, 2009, 54 (10) : 2727 - 2736
  • [10] Characterization of Anode-Supported Solid Oxide Fuel Cells With PSCF Cathode
    Haanappel, V. A. C.
    Mai, A.
    Uhlenbruck, S.
    Tietz, F.
    [J]. JOURNAL OF FUEL CELL SCIENCE AND TECHNOLOGY, 2009, 6 (01): : 0110071 - 0110076