On the robustness of linear and non-linear fractional-order systems with non-linear uncertain parameters

被引:6
|
作者
N'Doye, Ibrahima [1 ]
Darouach, Mohamed [2 ]
Voos, Holger [3 ]
Zasadzinski, Michel [2 ]
机构
[1] King Abdullah Univ Sci & Technol, Comp Elect & Math Sci & Engn Div CEMSE, Thuwal 239556900, Saudi Arabia
[2] Univ Lorraine, CNRS, Res Ctr Automat Control Nancy CRAN UMR, IUT Longwy, 186 Rue Lorraine, F-54400 Cosnes Et Romain, France
[3] Univ Luxembourg, FSTC, 6 Rue Richard Coudenhove Kalergi, L-1359 Luxembourg, Luxembourg
关键词
linear and non-linear fractional-order systems; linear matrix inequality (LMI); generalization of Gronwall-Bellman lemma; robust stabilization; parameter uncertainties; STABILITY TEST; STABILIZATION;
D O I
10.1093/imamci/dnv022
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
non-linear uncertain parameters. The uncertainty in the model appears in the form of the combination of additive perturbation' and multiplicative perturbation'. Sufficient conditions for the robust asymptotical stabilization of linear fractional-order systems are presented in terms of linear matrix inequalities (LMIs) with the fractional-order 0<alpha<1. Sufficient conditions for the robust asymptotical stabilization of non-linear fractional-order systems are then derived using a generalization of the Gronwall-Bellman approach. Finally, a numerical example is given to illustrate the effectiveness of the proposed results.
引用
收藏
页码:997 / 1014
页数:18
相关论文
共 50 条
  • [1] Stabilization of Non-Linear Fractional-Order Uncertain Systems
    Ji, Yude
    Du, Mingxing
    Guo, Yanping
    [J]. ASIAN JOURNAL OF CONTROL, 2018, 20 (02) : 669 - 677
  • [2] Non-linear Mittag-Leffler stabilisation of commensurate fractional-order non-linear systems
    Ding, Dongsheng
    Qi, Donglian
    Wang, Qiao
    [J]. IET CONTROL THEORY AND APPLICATIONS, 2015, 9 (05): : 681 - 690
  • [3] Stability of fractional-order switched non-linear systems
    Yang, Hao
    Jiang, Bin
    [J]. IET CONTROL THEORY AND APPLICATIONS, 2016, 10 (08): : 965 - 970
  • [4] Tuning of the non-linear fractional-order controller
    Petras, Ivo
    [J]. 2019 20TH INTERNATIONAL CARPATHIAN CONTROL CONFERENCE (ICCC), 2019, : 94 - 97
  • [5] Optimal non-linear robust control for non-linear uncertain systems
    Haddad, WM
    Chellaboina, V
    Fausz, JL
    Leonessa, A
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 2000, 73 (04) : 329 - 342
  • [6] Fractional-order relaxation laws in non-linear viscoelasticity
    Andrzej Hanyga
    [J]. Continuum Mechanics and Thermodynamics, 2007, 19 : 25 - 36
  • [7] INTELLIGENT ADAPTIVE FRACTIONAL-ORDER BACKSTEPPING CONTROL FOR UNCERTAIN NON-LINEAR QUADROTOR
    Guettal, Lemya
    Abdelghani, Chellihi
    Touba, Mostefa Mohamed
    Ajgou, Riadh
    [J]. ADVANCES IN DIFFERENTIAL EQUATIONS AND CONTROL PROCESSES, 2022, 28 : 99 - 117
  • [8] Fractional-order relaxation laws in non-linear viscoelasticity
    Hanyga, Andrzej
    [J]. CONTINUUM MECHANICS AND THERMODYNAMICS, 2007, 19 (1-2) : 25 - 36
  • [9] Design of functional interval observers for non-linear fractional-order systems
    Dinh Cong Huong
    [J]. ASIAN JOURNAL OF CONTROL, 2020, 22 (03) : 1127 - 1137
  • [10] Robust adaptive control of uncertain non-linear systems with non-linear parameterisation
    Liu, Yusheng
    [J]. INTERNATIONAL JOURNAL OF MODELLING IDENTIFICATION AND CONTROL, 2006, 1 (02) : 151 - 156