Fractional-order relaxation laws in non-linear viscoelasticity

被引:0
|
作者
Hanyga, Andrzej [1 ]
机构
[1] Princeton Univ, Dept Geosci, Princeton, NJ 08544 USA
关键词
viscoelasticity; fractional derivatives; nonlinear;
D O I
10.1007/s00161-007-0042-0
中图分类号
O414.1 [热力学];
学科分类号
摘要
Viscoelastic constitutive equations are constructed by assuming that the stress is a nonlinear function of the current strain and of a set of internal variables satisfying relaxation equations of fractional order. The dependence of the relaxation equations on the strain can also be nonlinear. The resulting constitutive equations are examined as mapping between appropriate Sobolev spaces. The proposed formulation is easier to implement numerically than history-based formulations.
引用
收藏
页码:25 / 36
页数:12
相关论文
共 50 条
  • [1] Fractional-order relaxation laws in non-linear viscoelasticity
    Andrzej Hanyga
    [J]. Continuum Mechanics and Thermodynamics, 2007, 19 : 25 - 36
  • [2] Tuning of the non-linear fractional-order controller
    Petras, Ivo
    [J]. 2019 20TH INTERNATIONAL CARPATHIAN CONTROL CONFERENCE (ICCC), 2019, : 94 - 97
  • [3] On the robustness of linear and non-linear fractional-order systems with non-linear uncertain parameters
    N'Doye, Ibrahima
    Darouach, Mohamed
    Voos, Holger
    Zasadzinski, Michel
    [J]. IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION, 2016, 33 (04) : 997 - 1014
  • [4] Stabilization of Non-Linear Fractional-Order Uncertain Systems
    Ji, Yude
    Du, Mingxing
    Guo, Yanping
    [J]. ASIAN JOURNAL OF CONTROL, 2018, 20 (02) : 669 - 677
  • [5] Stability of fractional-order switched non-linear systems
    Yang, Hao
    Jiang, Bin
    [J]. IET CONTROL THEORY AND APPLICATIONS, 2016, 10 (08): : 965 - 970
  • [6] Non-linear Mittag-Leffler stabilisation of commensurate fractional-order non-linear systems
    Ding, Dongsheng
    Qi, Donglian
    Wang, Qiao
    [J]. IET CONTROL THEORY AND APPLICATIONS, 2015, 9 (05): : 681 - 690
  • [7] Exact Mechanical Hierarchy of Non-Linear Fractional-Order Hereditariness
    Alotta, Gioacchino
    Bologna, Emanuela
    Zingales, Massimiliano
    [J]. SYMMETRY-BASEL, 2020, 12 (04):
  • [8] Finite-time control for a fractional-order non-linear HTGS
    Wu, Fengjiao
    Li, Fei
    Chen, Peng
    Wang, Bin
    [J]. IET RENEWABLE POWER GENERATION, 2019, 13 (04) : 633 - 639
  • [9] An effective algorithm for implementation of non-linear fractional-order controller on PLC
    Petras, Ivo
    Koever-Dorco, Miroslav
    [J]. PROCEEDINGS OF THE 2016 17TH INTERNATIONAL CARPATHIAN CONTROL CONFERENCE (ICCC), 2016, : 584 - 589
  • [10] Fractional-order crime propagation model with non-linear transmission rate
    Bansal, Komal
    Mathur, Trilok
    Agarwal, Shivi
    [J]. CHAOS SOLITONS & FRACTALS, 2023, 169