Fractional-order relaxation laws in non-linear viscoelasticity

被引:0
|
作者
Hanyga, Andrzej [1 ]
机构
[1] Princeton Univ, Dept Geosci, Princeton, NJ 08544 USA
关键词
viscoelasticity; fractional derivatives; nonlinear;
D O I
10.1007/s00161-007-0042-0
中图分类号
O414.1 [热力学];
学科分类号
摘要
Viscoelastic constitutive equations are constructed by assuming that the stress is a nonlinear function of the current strain and of a set of internal variables satisfying relaxation equations of fractional order. The dependence of the relaxation equations on the strain can also be nonlinear. The resulting constitutive equations are examined as mapping between appropriate Sobolev spaces. The proposed formulation is easier to implement numerically than history-based formulations.
引用
收藏
页码:25 / 36
页数:12
相关论文
共 50 条
  • [21] Non-linear viscoelasticity
    Schmachtenberg, E
    Brandt, M
    [J]. KUNSTSTOFFE-PLAST EUROPE, 2004, 94 (06): : 89 - 93
  • [22] A Fractional-Order Partially Non-Linear Model of a Laboratory Prototype of Hydraulic Canal System
    Gharab, Saddam
    Feliu-Batlle, Vicente
    Rivas-Perez, Raul
    [J]. ENTROPY, 2019, 21 (03):
  • [23] A Note on Fractional-Order Non-Linear Controller: Possible Neural Network Approach to Design
    Petras, Ivo
    [J]. 2016 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2016, : 603 - 608
  • [25] Sliding mode control for a fractional-order non-linear glucose-insulin system
    Khan, Muhammad Waleed
    Abid, Muhammad
    Khan, Abdul Qayyum
    Mustafa, Ghulam
    Ali, Muzamil
    Khan, Asifullah
    [J]. IET SYSTEMS BIOLOGY, 2020, 14 (05) : 223 - 229
  • [26] Spatially fractional-order viscoelasticity, non-locality, and a new kind of anisotropy
    Hanyga, A.
    Seredynska, M.
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (05)
  • [27] LINEAR AND NON-LINEAR VISCOELASTICITY OF GLASS
    REKHSON, SM
    [J]. JOURNAL OF NON-CRYSTALLINE SOLIDS, 1980, 42 (1-3) : 185 - 185
  • [28] Window function for fractional-order HP TiO2 non-linear memristor model
    Shi, Min
    Yu, Yajuan
    Xu, Qi
    [J]. IET CIRCUITS DEVICES & SYSTEMS, 2018, 12 (04) : 447 - 452
  • [29] An Optimized Fractional-Order PID (FOPID) Controller for a Non-Linear Conical Tank Level Process
    George, Mary Ann
    Kamath, Dattaguru, V
    Thirunavukkarasu, I
    [J]. PROCEEDINGS OF 2020 IEEE APPLIED SIGNAL PROCESSING CONFERENCE (ASPCON 2020), 2020, : 134 - 138
  • [30] FRACTIONAL-ORDER ITERATIVE LEARNING CONTROL FOR FRACTIONAL-ORDER LINEAR SYSTEMS
    Li, Yan
    Chen, YangQuan
    Ahn, Hyo-Sung
    [J]. ASIAN JOURNAL OF CONTROL, 2011, 13 (01) : 54 - 63