On the robustness of linear and non-linear fractional-order systems with non-linear uncertain parameters

被引:6
|
作者
N'Doye, Ibrahima [1 ]
Darouach, Mohamed [2 ]
Voos, Holger [3 ]
Zasadzinski, Michel [2 ]
机构
[1] King Abdullah Univ Sci & Technol, Comp Elect & Math Sci & Engn Div CEMSE, Thuwal 239556900, Saudi Arabia
[2] Univ Lorraine, CNRS, Res Ctr Automat Control Nancy CRAN UMR, IUT Longwy, 186 Rue Lorraine, F-54400 Cosnes Et Romain, France
[3] Univ Luxembourg, FSTC, 6 Rue Richard Coudenhove Kalergi, L-1359 Luxembourg, Luxembourg
关键词
linear and non-linear fractional-order systems; linear matrix inequality (LMI); generalization of Gronwall-Bellman lemma; robust stabilization; parameter uncertainties; STABILITY TEST; STABILIZATION;
D O I
10.1093/imamci/dnv022
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
non-linear uncertain parameters. The uncertainty in the model appears in the form of the combination of additive perturbation' and multiplicative perturbation'. Sufficient conditions for the robust asymptotical stabilization of linear fractional-order systems are presented in terms of linear matrix inequalities (LMIs) with the fractional-order 0<alpha<1. Sufficient conditions for the robust asymptotical stabilization of non-linear fractional-order systems are then derived using a generalization of the Gronwall-Bellman approach. Finally, a numerical example is given to illustrate the effectiveness of the proposed results.
引用
收藏
页码:997 / 1014
页数:18
相关论文
共 50 条
  • [21] Structural identifiability of non-linear systems using linear/non-linear splitting
    Chapman, MJ
    Godfrey, KR
    Chappell, MJ
    Evans, ND
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 2003, 76 (03) : 209 - 216
  • [22] Finite-time control for a fractional-order non-linear HTGS
    Wu, Fengjiao
    Li, Fei
    Chen, Peng
    Wang, Bin
    [J]. IET RENEWABLE POWER GENERATION, 2019, 13 (04) : 633 - 639
  • [23] A non-linear stochastic approach of ligaments and tendons fractional-order hereditariness
    Bologna, E.
    Lopomo, N.
    Marchiori, G.
    Zingales, M.
    [J]. PROBABILISTIC ENGINEERING MECHANICS, 2020, 60
  • [24] Fractional-order crime propagation model with non-linear transmission rate
    Bansal, Komal
    Mathur, Trilok
    Agarwal, Shivi
    [J]. CHAOS SOLITONS & FRACTALS, 2023, 169
  • [25] An effective algorithm for implementation of non-linear fractional-order controller on PLC
    Petras, Ivo
    Koever-Dorco, Miroslav
    [J]. PROCEEDINGS OF THE 2016 17TH INTERNATIONAL CARPATHIAN CONTROL CONFERENCE (ICCC), 2016, : 584 - 589
  • [26] On observation problem of uncertain non-linear systems
    Krasnova, SA
    Utkin, VA
    Kuznetsov, SI
    [J]. Proceedings of the Second IASTED International Multi-Conference on Automation, Control, and Information Technology - Automation, Control, and Applications, 2005, : 442 - 447
  • [27] DYNAMICS OF LINEAR AND NON-LINEAR SYSTEMS
    HEAD, JW
    [J]. ELECTRONIC ENGINEERING, 1966, 38 (457): : 188 - &
  • [28] DYNAMICS OF LINEAR AND NON-LINEAR SYSTEMS
    GILLIES, AW
    [J]. NATURE, 1966, 210 (5031) : 54 - &
  • [29] LINEAR CONTROL OF NON-LINEAR SYSTEMS
    FULLER, AT
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 1967, 5 (03) : 197 - +
  • [30] ON THE LINEAR EQUIVALENTS OF NON-LINEAR SYSTEMS
    SU, RJ
    [J]. SYSTEMS & CONTROL LETTERS, 1982, 2 (01) : 48 - 52