Magical Mathematical Formulas for Nanoboxes

被引:0
|
作者
Kaatz, Forrest H. [1 ]
Bultheel, Adhemar [2 ]
机构
[1] Mesalands Community Coll, 911 South 10th St, Tucumcari, NM 88401 USA
[2] Katholieke Univ Leuven, Dept Comp Sci, Celestijnenlaan 200A, B-3001 Heverlee, Belgium
来源
NANOSCALE RESEARCH LETTERS | 2021年 / 16卷 / 01期
关键词
Nanobox; Nanocage; Nanoframe; Coordination; Magic numbers; Dispersion; GALVANIC REPLACEMENT; ENHANCED ACTIVITY; OXYGEN REDUCTION; AU NANOCAGES; GOLD; SIZE; NANOSTRUCTURES; NANOPARTICLES; NANOCRYSTALS; DURABILITY;
D O I
10.1186/s11671-021-03472-8
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Hollow nanostructures are at the forefront of many scientific endeavors. These consist of nanoboxes, nanocages, nanoframes, and nanotubes. We examine the mathematics of atomic coordination in nanoboxes. Such structures consist of a hollow box with n shells and t outer layers. The magical formulas we derive depend on both n and t. We find that nanoboxes with t = 2 or 3, or walls with only a few layers generally have bulk coordinated atoms. The benefits of low-coordination in nanostructures is shown to only occur when the wall thickness is much thinner than normally synthesized. The case where t = 1 is unique, and has distinct magic formulas. Such low-coordinated nanoboxes are of interest for a myriad variety of applications, including batteries, fuel cells, plasmonic, catalytic and biomedical uses. Given these formulas, it is possible to determine the surface dispersion of the nanoboxes. We expect these formulas to be useful in understanding how the atomic coordination varies with n and t within a nanobox.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] SOME COMBINATORIAL FORMULAS ON MATHEMATICAL EXPECTATION
    HSU, LC
    ANNALS OF MATHEMATICAL STATISTICS, 1945, 16 (04): : 369 - 380
  • [32] LOGARITHMIC AND TRIGONOMETRIC TABLES and mathematical formulas
    不详
    EDUCATION, 1918, 39 (03): : 190 - 190
  • [33] Mathematical formulas and acid excretion.
    Barnett, GD
    JOURNAL OF BIOLOGICAL CHEMISTRY, 1918, 33 (02) : 267 - 270
  • [34] Predictive Input Interface of Mathematical Formulas
    Hijikata, Yoshinori
    Horie, Keisuke
    Nishida, Shogo
    HUMAN-COMPUTER INTERACTION - INTERACT 2013, PT I, 2013, 8117 : 383 - 400
  • [35] RECOGNITION OF ARABIC HANDPRINTED MATHEMATICAL FORMULAS
    AMIN, A
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 1991, 16 (04): : 531 - 542
  • [36] MATHEMATICAL FORMULAS - CZECH - BARTSCH,HJ
    STACH, J
    EKONOMICKO-MATEMATICKY OBZOR, 1984, 20 (03): : 346 - 347
  • [37] The process of carcinogenesis described by mathematical formulas
    Madej, Janusz A.
    MEDYCYNA WETERYNARYJNA-VETERINARY MEDICINE-SCIENCE AND PRACTICE, 2021, 77 (08): : 375 - 383
  • [38] A Method to Query and Browse Mathematical Formulas
    Hong Liurong
    Lu Zhuanghua
    INFORMATION AND MANAGEMENT ENGINEERING, PT V, 2011, 235 : 389 - 398
  • [39] A SYSTEM FOR INTERACTIVE EDITING OF MATHEMATICAL FORMULAS
    QUINT, V
    TSI-TECHNIQUE ET SCIENCE INFORMATIQUES, 1982, 1 (05): : 441 - 443
  • [40] Recognition of spatial relations in mathematical formulas
    Simistira, Fotini
    Papavassiliou, Vassilis
    Katsouros, Vassilis
    Carayannis, George
    2014 14TH INTERNATIONAL CONFERENCE ON FRONTIERS IN HANDWRITING RECOGNITION (ICFHR), 2014, : 164 - 168