Application of the fast multipole method to hybrid finite element-boundary element models

被引:2
|
作者
Sabariego, RV [1 ]
Gyselinck, J [1 ]
Geuzaine, C [1 ]
Dular, P [1 ]
Legros, W [1 ]
机构
[1] Univ Liege, Inst Montefiore, Dept Elect Engn, ELAP, B-4000 Liege, Belgium
关键词
fast multipole method; finite element method; boundary element method; hybrid method; Laplace function;
D O I
10.1016/j.cam.2003.12.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper focuses on the acceleration of the hybrid finite element-boundary element analysis of 2D eddy current problems by means of the fast multipole method. An adaptive truncation scheme for the expansion of the 2D Laplace Green function is proposed. A linear time harmonic test case is considered. The results obtained with the hybrid model, with and without fast multipole acceleration, agree well with those obtained with a finite element model. The computational cost of the three calculations is compared and discussed. The proposed adaptive truncation scheme significantly contributes to the computation time savings achieved with the fast multipole method, particularly when dealing with moderate sized problems. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:403 / 412
页数:10
相关论文
共 50 条
  • [41] Application of the Fast Multipole Method to Optimization of the Boundary Element Method of Solving the Helmholtz Equation
    Sivak S.A.
    Royak M.E.
    Stupakov I.M.
    [J]. Journal of Applied and Industrial Mathematics, 2021, 15 (03) : 490 - 503
  • [42] A DOMAIN DECOMPOSITION ALGORITHM WITH FINITE ELEMENT-BOUNDARY ELEMENT COUPLING
    严波
    杜娟
    胡宁
    关根英树
    [J]. Applied Mathematics and Mechanics(English Edition), 2006, (04) : 519 - 525
  • [43] Finite Element-Boundary Element Method Based Simulations of Electromagnetic Railgun in Augmented Configurations
    Praneeth, S. R. Naga
    Singh, Bhim
    [J]. IEEE JOURNAL ON MULTISCALE AND MULTIPHYSICS COMPUTATIONAL TECHNIQUES, 2022, 7 : 320 - 327
  • [44] Large-scale magnetic field analysis of laminated core by using the hybrid finite element and boundary element method combined with the fast multipole method
    Takahashi, Yasuhito
    Wakao, Shinji
    Fujiwara, Koji
    Fujino, Seiji
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2007, 43 (06) : 2971 - 2973
  • [45] An H-LU Preconditioner for the Hybrid Finite Element-Boundary Integral
    Liu, Rui-Qing
    Yang, Ming-Lin
    Wu, Bi-Yi
    Sheng, Xin-Qing
    [J]. 2020 IEEE MTT-S INTERNATIONAL CONFERENCE ON NUMERICAL ELECTROMAGNETIC AND MULTIPHYSICS MODELING AND OPTIMIZATION (NEMO 2020), 2020,
  • [46] A HYBRID FINITE ELEMENT-BOUNDARY INTEGRAL FORMULATION OF POISSONS-EQUATION
    SALON, SJ
    SCHNEIDER, JM
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 1981, 17 (06) : 2574 - 2576
  • [47] Frequency and angular extrapolations in hybrid finite element-boundary integral systems
    Univ of Michigan, Ann Arbor, United States
    [J]. Annu Rev Progr Appl Comput Electromagn, (302-307):
  • [48] Parallelizing a hybrid finite element-boundary integral method for the analysis of scattering and radiation of electromagnetic waves
    Duran Diaz, R.
    Rico, R.
    Garcia-Castillo, L. E.
    Gomez-Revuelto, I.
    Acebron, J. A.
    Martinez-Fernandez, I.
    [J]. FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2010, 46 (08) : 645 - 657
  • [49] Finite element-boundary integral methods in electromagnetics
    Nguyen, DT
    Qin, J
    Sancer, MI
    McClary, R
    [J]. FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2002, 38 (05) : 391 - 400
  • [50] Geometry-aware Domain Decomposition Preconditioning for Hybrid Finite Element-boundary Integral Method
    Gao, Hong-Wei
    Peng, Zhen
    Sheng, Xin-Qing
    [J]. 2016 PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM (PIERS), 2016, : 4717 - 4717