The finite volume method for Richards equation

被引:107
|
作者
Eymard, R
Gutnic, M
Hilhorst, D
机构
[1] Ecole Natl Ponts & Chaussees, F-77455 Marne la Vallee 2, France
[2] Univ Strasbourg 1, Inst Rech Math, F-67084 Strasbourg, France
[3] CNRS, Lab Math Anal Numer & EDP, F-91405 Orsay, France
[4] Univ Paris Sud, F-91405 Orsay, France
关键词
flow in porous media; Richards equation; finite volume methods; convergence of approximate solutions; discrete a priori estimates; Kolmogorov's theorem;
D O I
10.1023/A:1011547513583
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper we prove the convergence of a finite volume scheme for the discretization of an elliptic-parabolic problem, namely Richards equation beta(P)(t) - div(K(beta(P)) x del (P + z)) = 0, together with Dirichlet boundary conditions and an initial condition. This is done by means of a priori estimates in L-2 and the use of Kolmogorov's theorem on relative compactness of subsets of L-2.
引用
收藏
页码:259 / 294
页数:36
相关论文
共 50 条
  • [1] The finite volume method for Richards equation
    Robert Eymard
    Michaël Gutnic
    Danielle Hilhorst
    Computational Geosciences, 1999, 3 : 259 - 294
  • [2] Acceleration techniques for the iterative resolution of the Richards equation by the finite volume method
    Bevilacqua, Ivan
    Canone, Davide
    Ferraris, Stefano
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, 2011, 27 (08) : 1309 - 1320
  • [3] Acceleration techniques for the iterative resolution of the Richards equation by the finite volume method
    Dipartimento di Economia e Ingegneria Agraria, Forestale e Ambientale, Università di Torino, Torino, Italy
    Int. J. Numer. Methods Biomed. Eng., 8 (1309-1320):
  • [4] The Generalized Finite Volume SUSHI Scheme for the Discretization of Richards Equation
    Brenner K.
    Hilhorst D.
    Vu-Do H.-C.
    Vietnam Journal of Mathematics, 2016, 44 (3) : 557 - 586
  • [5] Verification, conservation, stability and efficiency of a finite volume method for the 1D Richards equation
    Caviedes-Voullieme, Daniel
    Garcia-Navarro, Pilar
    Murillo, Javier
    JOURNAL OF HYDROLOGY, 2013, 480 : 69 - 84
  • [6] Application of the finite difference heterogeneous multiscale method to the Richards' equation
    Chen, Fulai
    Ren, Li
    WATER RESOURCES RESEARCH, 2008, 44 (07)
  • [7] A Finite Point Method for Solving the Time Fractional Richards' Equation
    Qin, Xinqiang
    Yang, Xin
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2019, 2019
  • [8] Second-order accurate monotone finite volume scheme for Richards' equation
    Misiats, Oleksandr
    Lipnikov, Konstantin
    JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 239 : 123 - 137
  • [9] On the p-Adic analog of Richards' equation with the finite difference method
    Pourhadi, Ehsan
    Khrennikov, Andrei Yu.
    Saadati, Reza
    INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2020, 23 (04)
  • [10] A novel vertex-centered finite volume method for solving Richards' equation and its adaptation to local mesh refinement
    Qian, Yingzhi
    Zhang, Xiaoping
    Zhu, Yan
    Ju, Lili
    Guadagnini, Alberto
    Huang, Jiesheng
    JOURNAL OF COMPUTATIONAL PHYSICS, 2024, 501