The finite volume method for Richards equation

被引:107
|
作者
Eymard, R
Gutnic, M
Hilhorst, D
机构
[1] Ecole Natl Ponts & Chaussees, F-77455 Marne la Vallee 2, France
[2] Univ Strasbourg 1, Inst Rech Math, F-67084 Strasbourg, France
[3] CNRS, Lab Math Anal Numer & EDP, F-91405 Orsay, France
[4] Univ Paris Sud, F-91405 Orsay, France
关键词
flow in porous media; Richards equation; finite volume methods; convergence of approximate solutions; discrete a priori estimates; Kolmogorov's theorem;
D O I
10.1023/A:1011547513583
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper we prove the convergence of a finite volume scheme for the discretization of an elliptic-parabolic problem, namely Richards equation beta(P)(t) - div(K(beta(P)) x del (P + z)) = 0, together with Dirichlet boundary conditions and an initial condition. This is done by means of a priori estimates in L-2 and the use of Kolmogorov's theorem on relative compactness of subsets of L-2.
引用
收藏
页码:259 / 294
页数:36
相关论文
共 50 条
  • [31] NUMERICAL ANALYSIS OF A NONLINEARLY STABLE AND POSITIVE CONTROL VOLUME FINITE ELEMENT SCHEME FOR RICHARDS EQUATION WITH ANISOTROPY
    Oulhaj, Ahmed Ait Hammou
    Cances, Clement
    Chainais-Hillairet, Claire
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2018, 52 (04): : 1533 - 1567
  • [32] Mixed finite elements for the Richards' equation: linearization procedure
    Pop, IS
    Radu, F
    Knabner, P
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2004, 168 (1-2) : 365 - 373
  • [33] An approximate analytical solution of Richards equation with finite boundary
    Xi Chen
    Ying Dai
    Boundary Value Problems, 2017
  • [34] An approximate analytical solution of Richards equation with finite boundary
    Chen, Xi
    Dai, Ying
    BOUNDARY VALUE PROBLEMS, 2017,
  • [35] A FINITE DIFFERENCE/FINITE VOLUME METHOD FOR SOLVING THE FRACTIONAL DIFFUSION WAVE EQUATION
    Sun, Yinan
    Zhang, Tie
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2021, 58 (03) : 553 - 569
  • [36] Finite Volume Method for the Black-Scholes Equation Transformed on Finite Interval
    Valkov, R.
    APPLICATIONS OF MATHEMATICS IN ENGINEERING AND ECONOMICS (AMEE '12), 2012, 1497 : 76 - 83
  • [37] Efficient Algorithms for Solving Richards Equation: From Linearized Finite Element Method to Deep Learning
    Liu, Fengnan
    Fukumoto, Yasuhide
    Hou, Zhenzhen
    Zheng, Haoyi
    Zhao, Xiaopeng
    NATURAL GEO-DISASTERS AND RESILIENCY, CREST 2023, 2024, 445 : 137 - 147
  • [38] A mass-conservative finite volume predictor-corrector solution of the 1D Richards' equation
    Lai, Wencong
    Ogden, Fred L.
    JOURNAL OF HYDROLOGY, 2015, 523 : 119 - 127
  • [39] A Rectangular Finite Volume Element Method for a Semilinear Elliptic Equation
    Zhiguang Xiong
    Yanping Chen
    Journal of Scientific Computing, 2008, 36 : 177 - 191
  • [40] Heat Conduction Equation Finite Volume Method to Achieve on MATLAB
    Xiao Xiaofeng
    Xue Qiong
    MACHINERY, MATERIALS SCIENCE AND ENGINEERING APPLICATIONS, 2012, 510 : 205 - +