Second-order accurate monotone finite volume scheme for Richards' equation

被引:15
|
作者
Misiats, Oleksandr [1 ]
Lipnikov, Konstantin [2 ]
机构
[1] Penn State Univ, Dept Math, University Pk, PA 16802 USA
[2] Los Alamos Natl Lab, BMS B284, Los Alamos, NM 87544 USA
关键词
Richards' equation; Finite volume; Monotonicity; Accuracy; HYDRAULIC CONDUCTIVITY; INFILTRATION; UPWIND; FLOW; MODEL;
D O I
10.1016/j.jcp.2012.09.004
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this work we perform a theoretical and numerical analysis of Richards' equation. For certain types of nonlinearities we provide explicit analytical solutions. These solutions are used to show that conventional unconditionally monotone finite volume schemes have only first-order accuracy. We derive necessary and sufficient conditions for the monotonicity of finite volume discretizations and use these conditions to construct a monotone finite volume discretization accurate to second-order. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:123 / 137
页数:15
相关论文
共 50 条
  • [1] Second-order accurate finite volume schemes with the discrete maximum principle for solving Richards' equation on unstructured meshes
    Svyatskiy, D.
    Lipnikov, K.
    [J]. ADVANCES IN WATER RESOURCES, 2017, 104 : 114 - 126
  • [2] An α-Robust and Second-Order Accurate Scheme for a Subdiffusion Equation
    Mustapha, Kassem
    Mclean, William
    Dick, Josef
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2024, 99 (03)
  • [3] Second-order accurate finite volume method for G-equation on polyhedral meshes
    Hahn, Jooyoung
    Mikula, Karol
    Frolkovic, Peter
    Priesching, Peter
    Balazovjech, Martin
    Basara, Branislav
    [J]. JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2023, 40 (02) : 1053 - 1082
  • [4] Second-order accurate finite volume method for G-equation on polyhedral meshes
    Jooyoung Hahn
    Karol Mikula
    Peter Frolkovič
    Peter Priesching
    Martin Balažovjech
    Branislav Basara
    [J]. Japan Journal of Industrial and Applied Mathematics, 2023, 40 : 1053 - 1082
  • [5] A MONOTONE, SECOND ORDER ACCURATE SCHEME FOR CURVATURE MOTION
    Esedoglu, Selim
    Guo, Jiajia
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2022, 60 (05) : 2435 - 2447
  • [6] A second-order splitting method for a finite difference scheme for the Sivashinsky equation
    Omrani, K
    [J]. APPLIED MATHEMATICS LETTERS, 2003, 16 (03) : 441 - 445
  • [7] A second-order hybrid finite volume method for solving the Stokes equation
    Chen, Zhongying
    Xu, Yuesheng
    Zhang, Jiehua
    [J]. APPLIED NUMERICAL MATHEMATICS, 2017, 119 : 213 - 224
  • [8] A second-order accurate finite-difference scheme for the classical Fisher-Kolmogorov-Petrovsky-Piscounov equation
    Izadi, Mohammad
    [J]. JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES, 2021, 42 (02): : 431 - 448
  • [9] A second-order accurate difference scheme for an extended Fisher-Kolmogorov equation
    Kadri, Tlili
    Omrani, Khaled
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 61 (02) : 451 - 459
  • [10] Second-order accurate finite volume method for well-driven flows
    Dotlic, M.
    Vidovic, D.
    Pokorni, B.
    Pusic, M.
    Dimkic, M.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 307 : 460 - 475