Robust Bayesian algorithm for distributed source reconstructions from MEG/EEG data

被引:0
|
作者
Cai, Chang [1 ]
Diwakar, Mithun [1 ]
Sekihara, Kensuke [2 ]
Nagarajan, Srikantan S. [1 ]
机构
[1] UCSF, Biomagnet Imaging Lab, San Francisco, CA USA
[2] Signal Anal Inc, Hachioji, Tokyo, Japan
关键词
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
One of the enduring challenges in MEG/EEG data analysis is the poor performance of source reconstruction algorithms under high noise and interference conditions, especially in case of distributed, correlated brain activity with complex spatial extent. In our previous work, we developed a source localization algorithm, Champagne, which is robust to the effects of noise, interference and highly correlated brain source activity. Champagne is ideally suited for reconstructions of sparse and highly clustered brain source activity rather than reconstruction of distributed source activity with larger spatial extents. Here, we introduce a novel Bayesian algorithm that enables reconstruction of distributed source activity. We build upon the robust performance features of the Champagne algorithm and refer to this algorithm as Smooth_Champagne. Simulations demonstrate excellent performance of Smooth_Champagne in determining the spatial extent of source activity. Smooth_Champagne also accurately reconstructs real MEG and EEG data.
引用
收藏
页码:336 / 339
页数:4
相关论文
共 50 条
  • [1] Hierarchical multiscale Bayesian algorithm for robust MEG/EEG source reconstruction
    Cai, Chang
    Sekihara, Kensuke
    Nagarajan, Srikantan S.
    NEUROIMAGE, 2018, 183 : 698 - 715
  • [2] Hypothesis testing in distributed source models for EEG and MEG data
    Waldorp, LJ
    Huizenga, HM
    Grasman, RPPP
    Böcker, KBE
    Molenaar, PCM
    HUMAN BRAIN MAPPING, 2006, 27 (02) : 114 - 128
  • [3] fMRI-constrained EEG and MEG source reconstructions
    Wagner, M
    Fuchs, M
    Wischmann, HA
    Kohler, T
    Theissen, A
    Ludwig, F
    JOURNAL OF COGNITIVE NEUROSCIENCE, 1998, 10 : 100 - 100
  • [4] Bayesian analysis of phase data in EEG and MEG
    Dimmock, Sydney
    O'Donnell, Cian
    Houghton, Conor
    ELIFE, 2023, 12
  • [5] A unified Bayesian framework for MEG/EEG source imaging
    Wipf, David
    Nagarajan, Srikantan
    NEUROIMAGE, 2009, 44 (03) : 947 - 966
  • [6] A probabilistic algorithm integrating source localization and noise suppression for MEG and EEG data
    Zumer, Johanna M.
    Attias, Hagai T.
    Sekihara, Kensuke
    Nagarajan, Snikantan S.
    NEUROIMAGE, 2007, 37 (01) : 102 - 115
  • [7] A System for the Online Reconstruction of Distributed Sources from EEG and MEG data
    Fuchs, M.
    Knoesche, T.
    Maess, B.
    BIOMEDICAL ENGINEERING-BIOMEDIZINISCHE TECHNIK, 2012, 57 : 674 - 674
  • [8] Bayesian model for EEG/MEG and fMRI data fusion
    Trujillo-Barreto, NJ
    Martínez-Montes, E
    Valdés-Sosa, PA
    Melie-García, L
    NEUROIMAGE, 2001, 13 (06) : S270 - S270
  • [9] A Bayesian model of EEG/MEG source dynamics and effective connectivity
    El-Deredy, W.
    Olier, I.
    Trujillo-Barreto, N.
    INTERNATIONAL JOURNAL OF PSYCHOPHYSIOLOGY, 2012, 85 (03) : 346 - 346
  • [10] Source Reconstruction Accuracy of MEG and EEG Bayesian Inversion Approaches
    Belardinelli, Paolo
    Ortiz, Erick
    Barnes, Gareth
    Noppeney, Uta
    Preissl, Hubert
    PLOS ONE, 2012, 7 (12):