Robust Bayesian algorithm for distributed source reconstructions from MEG/EEG data

被引:0
|
作者
Cai, Chang [1 ]
Diwakar, Mithun [1 ]
Sekihara, Kensuke [2 ]
Nagarajan, Srikantan S. [1 ]
机构
[1] UCSF, Biomagnet Imaging Lab, San Francisco, CA USA
[2] Signal Anal Inc, Hachioji, Tokyo, Japan
关键词
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
One of the enduring challenges in MEG/EEG data analysis is the poor performance of source reconstruction algorithms under high noise and interference conditions, especially in case of distributed, correlated brain activity with complex spatial extent. In our previous work, we developed a source localization algorithm, Champagne, which is robust to the effects of noise, interference and highly correlated brain source activity. Champagne is ideally suited for reconstructions of sparse and highly clustered brain source activity rather than reconstruction of distributed source activity with larger spatial extents. Here, we introduce a novel Bayesian algorithm that enables reconstruction of distributed source activity. We build upon the robust performance features of the Champagne algorithm and refer to this algorithm as Smooth_Champagne. Simulations demonstrate excellent performance of Smooth_Champagne in determining the spatial extent of source activity. Smooth_Champagne also accurately reconstructs real MEG and EEG data.
引用
收藏
页码:336 / 339
页数:4
相关论文
共 50 条
  • [21] Spatio-temporal Regularization in Linear Distributed Source Reconstruction from EEG/MEG: A Critical Evaluation
    Moritz Dannhauer
    Eric Lämmel
    Carsten H. Wolters
    Thomas R. Knösche
    Brain Topography, 2013, 26 : 229 - 246
  • [22] Spatio-temporal Regularization in Linear Distributed Source Reconstruction from EEG/MEG: A Critical Evaluation
    Dannhauer, Moritz
    Laemmel, Eric
    Wolters, Carsten H.
    Knoesche, Thomas R.
    BRAIN TOPOGRAPHY, 2013, 26 (02) : 229 - 246
  • [23] Bayesian brain source imaging based on combined MEG/EEG and fMRI using MCMC
    Jun, Sung C.
    George, John S.
    Kim, Woohan
    Pare-Blagoev, Juliana
    Plis, Sergey
    Ranken, Doug M.
    Schmidt, David M.
    NEUROIMAGE, 2008, 40 (04) : 1581 - 1594
  • [24] A Parametric Empirical Bayesian Framework for fMRI-Constrained MEG/EEG Source Reconstruction
    Henson, Richard N.
    Flandin, Guillaume
    Friston, Karl J.
    Mattout, Jeremie
    HUMAN BRAIN MAPPING, 2010, 31 (10) : 1512 - 1531
  • [25] Multi dipole source identification from EEG/MEG topography
    Li, ZM
    Bai, XX
    Zhang, QY
    Akutagawa, M
    Shichijo, F
    Kinouchi, Y
    Abeyratne, UR
    2004 8TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS AND VISION, VOLS 1-3, 2004, : 953 - 957
  • [26] Superadditive information from simultaneous MEG/EEG data
    Pflieger, ME
    Simpson, GV
    Ahlfors, SP
    Ilmoniemi, RJ
    BIOMAG 96: PROCEEDINGS OF THE TENTH INTERNATIONAL CONFERENCE ON BIOMAGNETISM, VOLS I & II, 2000, : 1154 - 1157
  • [27] A new algorithm for learning parameters of a Bayesian network from distributed data
    Chen, R
    Sivakumar, K
    2002 IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, 2002, : 585 - 588
  • [28] Comparison of distributed source localization methods for EEG data
    Seeland, A.
    Straube, S.
    Kirchner, F.
    PERCEPTION, 2013, 42 : 220 - 220
  • [29] Probabilistic algorithms for MEG/EEG source reconstruction using temporal basis functions learned from data
    Zumer, Johanna M.
    Attias, Hagai T.
    Sekihara, Kensuke
    Nagarajan, Srikantan S.
    NEUROIMAGE, 2008, 41 (03) : 924 - 940
  • [30] Bayesian inflationary reconstructions from Planck 2018 data
    Handley, Will J.
    Lasenby, Anthony N.
    Peiris, Hiranya V.
    Hobson, Michael P.
    PHYSICAL REVIEW D, 2019, 100 (10)