A probabilistic algorithm integrating source localization and noise suppression for MEG and EEG data

被引:46
|
作者
Zumer, Johanna M.
Attias, Hagai T.
Sekihara, Kensuke
Nagarajan, Snikantan S. [1 ]
机构
[1] Univ Calif San Francisco, Dept Radiol, Biomagnet Imaing Lab, San Francisco, CA 94143 USA
[2] Univ Calif San Francisco, UC Berkeley Joint Grad Grp Bioengn, San Francisco, CA 94143 USA
[3] Golden Metall Inc, San Francisco, CA 94147 USA
[4] Tokyo Metropolitan Univ, Dept Syst Design & Engn, Tokyo 1910065, Japan
关键词
magnetoencephalography; electroencephalography; inverse methods; Bayesian inference; denoising;
D O I
10.1016/j.neuroimage.2007.04.054
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
We have developed a novel probabilistic model that estimates neural source activity measured by MEG and EEG data while suppressing the effect of interference and noise sources. The model estimates contributions to sensor data from evoked sources, interference sources and sensor noise using Bayesian methods and by exploiting knowledge about their timing and spatial covariance properties. Full posterior distributions are computed rather than just the MAP estimates. In simulation, the algorithm can accurately localize and estimate the time courses of several simultaneously active dipoles, with rotating or fixed orientation, at noise levels typical for averaged MEG data. The algorithm even performs reasonably at noise levels typical of an average of just a few trials. The algorithm is superior to beamforming techniques, which we show to be an approximation to our graphical model, in estimation of temporally correlated sources. Success of this algorithm using MEG data for localizing bilateral auditory cortex, low-SNR somatosensory activations, and for localizing an epileptic spike source are also demonstrated. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:102 / 115
页数:14
相关论文
共 50 条
  • [1] DIRECT INTERFERENCE SUPPRESSION IN EEG/MEG DIPOLE SOURCE LOCALIZATION
    Wu, Shun Chi
    Swindlehurst, A. Lee
    Yao, Yu Chen
    [J]. 2010 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2010, : 574 - 577
  • [2] Automatic and robust noise suppression in EEG and MEG: The SOUND algorithm
    Mutanen, Tuomas P.
    Metsomaa, Johanna
    Liljander, Sara
    Ilmoniemi, Risto J.
    [J]. NEUROIMAGE, 2018, 166 : 135 - 151
  • [3] EEG and MEG source localization
    Rampp S.
    [J]. Zeitschrift für Epileptologie, 2018, 31 (2): : 109 - 112
  • [4] COHERENT MEG/EEG SOURCE LOCALIZATION IN TRANSFORMED DATA SPACE
    Zhang, Junpeng
    Dalal, Sarang S.
    Nagarajan, Srikantan S.
    Yao, Dezhong
    [J]. BIOMEDICAL ENGINEERING-APPLICATIONS BASIS COMMUNICATIONS, 2010, 22 (05): : 351 - 365
  • [5] MEG and EEG source localization in beamspace
    Rodríguez-Rivera, A
    Baryshnikov, BV
    Van Veen, BD
    Wakai, RT
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2006, 53 (03) : 430 - 441
  • [6] A fast algorithm using spatio-temporal data for MEG source localization tolerant of noise
    Zhu, Hong-Yi
    Li, Jun
    Shen, Jian-Qi
    [J]. Chinese Journal of Biomedical Engineering, 2003, 22 (03) : 215 - 219
  • [7] A probabilistic algorithm for MEG source reconstruction
    Zumer, Johanna M.
    Attias, Hagai T.
    Sekihara, Kensuke
    Nagarajan, Srikantan S.
    [J]. 2006 IEEE SENSOR ARRAY AND MULTICHANNEL SIGNAL PROCESSING WORKSHOP PROCEEDINGS, VOLS 1 AND 2, 2006, : 111 - +
  • [8] Coregistered EEG/MEG for source localization in epilepsy
    Stefan, Hermann
    [J]. EPILEPSIA, 2010, 51 : 66 - 67
  • [9] A new multimodal cortical source imaging algorithm for integrating simultaneously recorded EEG and MEG
    Choi, Jong-Ho
    Jung, Young-Jin
    Jung, Hyun-Kyo
    Im, Chang-Hwan
    [J]. INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2013, 21 (06) : 1074 - 1089
  • [10] Two probabilistic algorithms for MEG/EEG source reconstruction
    Zumer, Johanna M.
    Attias, Hagai T.
    Sekihara, Kensuke
    Nagarajan, Srikantan S.
    [J]. 2006 3RD IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: MACRO TO NANO, VOLS 1-3, 2006, : 940 - +