A Stochastic Restricted Principal Components Regression Estimator in the Linear Model

被引:5
|
作者
He, Daojiang [1 ]
Wu, Yan [1 ]
机构
[1] Anhui Normal Univ, Dept Stat, Wuhu 241000, Peoples R China
来源
关键词
RIDGE-REGRESSION; ERROR;
D O I
10.1155/2014/231506
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We propose a new estimator to combat the multicollinearity in the linear model when there are stochastic linear restrictions on the regression coefficients. The new estimator is constructed by combining the ordinary mixed estimator (OME) and the principal components regression (PCR) estimator, which is called the stochastic restricted principal components (SRPC) regression estimator. Necessary and sufficient conditions for the superiority of the SRPC estimator over the OME and the PCR estimator are derived in the sense of the mean squared error matrix criterion. Finally, we give a numerical example and a Monte Carlo study to illustrate the performance of the proposed estimator.
引用
收藏
页数:6
相关论文
共 50 条