The small sample properties of the restricted principal component regression estimator in linear regression model

被引:1
|
作者
Wu, Jibo [1 ]
机构
[1] Chongqing Univ Arts & Sci, Key Lab Grp & Graph Theories & Applicat, Chongqing 402160, Peoples R China
基金
中国国家自然科学基金;
关键词
Pitman's closeness criterion; Principal components regression estimator; Restricted principal components regression estimator; 62J05; PITMAN NEARNESS CRITERION; CLOSENESS; PARAMETERS;
D O I
10.1080/03610926.2015.1024867
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In regression analysis, to deal with the problem of multicollinearity, the restricted principal components regression estimator is proposed. In this paper, we compared the restricted principal components regression estimator, the principal components regression estimator, and the ordinary least-squares estimator with each other under the Pitman's closeness criterion. We showed that the restricted principal components regression estimator is always superior to the principal components regression estimator, under certain conditions the restricted principal components regression estimator is superior to the ordinary least-squares estimator under the Pitman's closeness criterion and under certain conditions the principal components regression estimator is superior to the ordinary least-squares estimator under the Pitman's closeness criterion.
引用
收藏
页码:1661 / 1667
页数:7
相关论文
共 50 条