GALILEAN COVARIANT DIRAC EQUATION WITH A WOODS SAXON POTENTIAL

被引:1
|
作者
Othman, A. A. [1 ,2 ]
De Montigny, M. [1 ,3 ]
Khanna, F. C. [1 ,4 ]
机构
[1] Univ Alberta, Inst Theoret Phys, Edmonton, AB T6G 2E1, Canada
[2] Taibah Univ, Fac Sci, Dept Phys, Al Madinah Al Munawwarah, Saudi Arabia
[3] Univ Alberta, Fac St Jean, Edmonton, AB T6C 4G9, Canada
[4] TRIUMF, Vancouver, BC V6T 2A3, Canada
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS E | 2013年 / 22卷 / 12期
关键词
Galilean covariance; Dirac equation; Woods-Saxon potential; MANY-BODY THEORY; ELECTRONIC-STRUCTURE; OPTICAL-MODEL; SCHRODINGER; OSCILLATOR; INVARIANCE; PARTICLES; MECHANICS; SYMMETRY; ALGEBRA;
D O I
10.1142/S0218301313500924
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
WE derive and solve the Galilean covariant Dirac equation, also called "Levy-Leblond equation", for spin-1/2 particles in a Woods-Saxon potential. We obtain this wave equation with a Galilean covariant approach, which is based on a (4 + 1)-dimensional manifold with light-cone coordinates followed by a reduction to the (3 + 1)-dimensional Galilean space-time. We apply the Pekeris approximation and exploit the Nikiforov-Uvarov method to find the energy eigenvalues and eigenfunctions.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Polynomial solutions of the Schrodinger equation for the generalized Woods-Saxon potential
    Berkdemir, C
    Berkdemir, A
    Sever, R
    PHYSICAL REVIEW C, 2005, 72 (02):
  • [32] New exact solution of the one-dimensional Dirac equation for the Woods-Saxon potential within the effective mass case
    Panella, O.
    Biondini, S.
    Arda, A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (32)
  • [33] Dirac Particle for the Position Dependent Mass in the Generalized Asymmetric Woods-Saxon Potential
    Alpdogan, Soner
    Havare, Ali
    ADVANCES IN HIGH ENERGY PHYSICS, 2014, 2014
  • [34] Dirac Oscillator in a Galilean Covariant Non-commutative Space
    G. R. de Melo
    M. de Montigny
    P. J. Pompeia
    E. S. Santos
    International Journal of Theoretical Physics, 2013, 52 : 441 - 457
  • [35] Solution of the relativistic Dirac-Woods-Saxon problem
    Guo, JY
    Fang, XZ
    Xu, FX
    PHYSICAL REVIEW A, 2002, 66 (06): : 4
  • [36] Dirac Oscillator in a Galilean Covariant Non-commutative Space
    de Melo, G. R.
    de Montigny, M.
    Pompeia, P. J.
    Santos, E. S.
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2013, 52 (02) : 441 - 457
  • [37] Exact Analytical Solution of the Klein–Gordon Equation in the Generalized Woods–Saxon Potential
    O.Bayrak
    D.Sahin
    CommunicationsinTheoreticalPhysics, 2015, 64 (09) : 259 - 262
  • [38] Two-body Spinless Salpeter equation for the Woods-Saxon potential
    S Hassanabadi
    M Ghominejad
    B H Yazarloo
    S Zarrinkamar
    H Hassanabadi
    Chinese Physics C, 2013, 37 (08) : 14 - 17
  • [39] Two-body Spinless Salpeter equation for the Woods-Saxon potential
    Hassanabadi, S.
    Ghominejad, M.
    Yazarloo, B. H.
    Zarrinkamar, S.
    Hassanabadi, H.
    CHINESE PHYSICS C, 2013, 37 (08)
  • [40] The modified Woods-Saxon potential in the Duffin-Kemmer-Petiau equation
    Darroodi, M.
    Hassanabadi, H.
    Salehi, N.
    EUROPEAN PHYSICAL JOURNAL A, 2015, 51 (06):