Polynomial solutions of the Schrodinger equation for the generalized Woods-Saxon potential

被引:93
|
作者
Berkdemir, C
Berkdemir, A
Sever, R [1 ]
机构
[1] Middle E Tech Univ, Dept Phys, TR-06531 Ankara, Turkey
[2] Erciyes Univ, Dept Phys, Fac Arts & Sci, TR-38039 Kayseri, Turkey
来源
PHYSICAL REVIEW C | 2005年 / 72卷 / 02期
关键词
D O I
10.1103/PhysRevC.72.027001
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
The bound state energy eigenvalues and the corresponding eigenfunctions of the generalized Woods-Saxon potential are obtained by means of Nikiforov-Uvarov (NU) method. Certain bound states of the Schrodinger equation for the potential are calculated analytically and the wave functions are found in terms of the Jacobi polynomials. It is shown that the results are in good agreement with those obtained previously.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Polynomial solutions of the Schrodinger equation for the generalized Woods-Saxon potential (vol 72, 027001, 2005)
    Berkdemir, Cuneyt
    Berkdemir, Ayse
    Sever, Ramazan
    [J]. PHYSICAL REVIEW C, 2006, 74 (03):
  • [2] The Fractional Schrodinger Equation with the Generalized Woods-Saxon Potential
    Abu-Shady, M.
    Inyang, Etido P.
    [J]. arXiv, 2023,
  • [3] Scattering of the Woods-Saxon potential in the Schrodinger equation
    Arda, Altug
    Aydogdu, Oktay
    Sever, Ramazan
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (42)
  • [4] Solutions for a generalized Woods-Saxon potential
    Gunul, Buelent
    Koksal, Koray
    [J]. PHYSICA SCRIPTA, 2007, 76 (05) : 565 - 570
  • [5] ANALYTICAL SOLUTIONS OF THE SCHRODINGER EQUATION WITH THE WOODS-SAXON POTENTIAL FOR ARBITRARY l STATE
    Badalov, V. H.
    Ahmadov, H. I.
    Ahmadov, A. I.
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS E-NUCLEAR PHYSICS, 2009, 18 (03) : 631 - 641
  • [6] Bound states of the D-dimensional Schrodinger equation for the generalized Woods-Saxon potential
    Badalov, V. H.
    Baris, B.
    Uzun, K.
    [J]. MODERN PHYSICS LETTERS A, 2019, 34 (14)
  • [7] The bound state solutions of the D-dimensional Schrodinger equation for the Woods-Saxon potential
    Badalov, V. H.
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS E-NUCLEAR PHYSICS, 2016, 25 (01)
  • [8] THE FRACTIONAL SCHR?DINGER EQUATION WITH THE GENERALIZED WOODS-SAXON POTENTIAL
    Abu-Shady, Mohamed
    Inyang, Etido P.
    [J]. EAST EUROPEAN JOURNAL OF PHYSICS, 2023, (01): : 63 - 68
  • [9] Soliton solutions of nonlinear Schrodinger equation with the variable coefficients under the influence of Woods-Saxon potential
    Gu, Yongyi
    Chen, Baixin
    Ye, Feng
    Aminakbari, Najva
    [J]. RESULTS IN PHYSICS, 2022, 42
  • [10] The Woods-Saxon potential in the Dirac equation
    Kennedy, P
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (03): : 689 - 698