Statistical inference about the location parameter of the three-parameter Weibull distribution

被引:12
|
作者
Chen, Dongming [1 ]
Chen, Zhenmin [1 ]
机构
[1] Florida Int Univ, Dept Stat, Miami, FL 33199 USA
关键词
three-parameter Weibull distribution; confidence interval; upper confidence limit; point estimation; Monte Carlo simulation; INTERVAL;
D O I
10.1080/00949650701413565
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Exact confidence intervals, confidence limits and point estimators for the location parameter of the three-parameter Weibull distributions have been investigated in the literature. One of the purposes of this paper is to find the best selection of i, j and k for the approach given by Chen [Z. Chen, Exact confidence intervals and joint confidence regions for the parameters of the Weibull distributions, Int. J. Reliab., Qual. Safety Eng. 11 (2004), pp. 133-140.] for constructing an exact confidence interval of the location parameter . Statistical simulation has been conducted to find the optimal combination. The critical values of the pivotal quantity are obtained. The point estimation for the location parameter of the three-parameter Weibull distributions is also discussed. Compared with the commonly used maximum likelihood estimation method, the method introduced in this research provides a simpler, more accurate and more efficient way to estimate the location parameter of the three-parameter Weibull distributions.
引用
收藏
页码:215 / 225
页数:11
相关论文
共 50 条
  • [41] A consistent parameter estimation in the three-parameter lognormal distribution
    Nagatsuka, Hideki
    Balakrishnan, N.
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2012, 142 (07) : 2071 - 2086
  • [42] Bayesian inference of three-parameter bathtub-shaped lifetime distribution
    Jung, Myoungjin
    Chung, Younshik
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2018, 47 (17) : 4229 - 4241
  • [43] Parameter estimation of three-parameter Weibull probability model based on outlier detection
    Zhang, Hang
    Gao, Zhefeng
    Du, Chenran
    Bi, Shansong
    Fang, Yanyan
    Yun, Fengling
    Fang, Sheng
    Yu, Zhanglong
    Cui, Yi
    Shen, Xueling
    [J]. RSC ADVANCES, 2022, 12 (53) : 34154 - 34164
  • [44] On nonlinear weighted least squares fitting of the three-parameter inverse Weibull distribution
    Jukic, Dragan
    Markovic, Darija
    [J]. MATHEMATICAL COMMUNICATIONS, 2010, 15 (01) : 13 - 24
  • [45] Amplitude statistics of sea clutter by three-parameter log-weibull distribution
    Sayama, Shuji
    Ishii, Seishiro
    [J]. IEEJ Transactions on Fundamentals and Materials, 2019, 139 (11): : 618 - 624
  • [46] On the existence of the nonlinear weighted least squares estimate for a three-parameter Weibull distribution
    Jukic, Dragan
    Bensic, Mirta
    Scitovski, Rudolf
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2008, 52 (09) : 4502 - 4511
  • [47] A new approach to fitting the three-parameter Weibull distribution: An application to glass ceramics
    Garrido, Arturo
    Caro-Carretero, Raquel
    Jimenez-Octavio, Jesus R.
    Carnicero, Alberto
    Such, Miguel
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2021, 50 (14) : 3403 - 3420
  • [48] Parameter and quantile estimation for the three-parameter lognormal distribution based on statistics invariant to unknown location
    Nagatsuka, Hideki
    Balakrishnan, N.
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2013, 83 (09) : 1629 - 1647
  • [49] Parameter and quantile estimation for the three-parameter gamma distribution based on statistics invariant to unknown location
    Nagatsuka, Hideki
    Balakrishnan, N.
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2012, 142 (07) : 2087 - 2102
  • [50] Moments of the three-parameter Fermi distribution
    Zhang, L.
    Gao, Y.
    Zheng, H.
    Huang, M. R.
    Liu, X.
    [J]. MODERN PHYSICS LETTERS A, 2017, 32 (36)