Statistical inference about the location parameter of the three-parameter Weibull distribution

被引:12
|
作者
Chen, Dongming [1 ]
Chen, Zhenmin [1 ]
机构
[1] Florida Int Univ, Dept Stat, Miami, FL 33199 USA
关键词
three-parameter Weibull distribution; confidence interval; upper confidence limit; point estimation; Monte Carlo simulation; INTERVAL;
D O I
10.1080/00949650701413565
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Exact confidence intervals, confidence limits and point estimators for the location parameter of the three-parameter Weibull distributions have been investigated in the literature. One of the purposes of this paper is to find the best selection of i, j and k for the approach given by Chen [Z. Chen, Exact confidence intervals and joint confidence regions for the parameters of the Weibull distributions, Int. J. Reliab., Qual. Safety Eng. 11 (2004), pp. 133-140.] for constructing an exact confidence interval of the location parameter . Statistical simulation has been conducted to find the optimal combination. The critical values of the pivotal quantity are obtained. The point estimation for the location parameter of the three-parameter Weibull distributions is also discussed. Compared with the commonly used maximum likelihood estimation method, the method introduced in this research provides a simpler, more accurate and more efficient way to estimate the location parameter of the three-parameter Weibull distributions.
引用
收藏
页码:215 / 225
页数:11
相关论文
共 50 条
  • [21] Estimating parameters of the three-parameter Weibull distribution using a neural network
    Abbasi, Babak
    Rabelo, Luis
    Hosseinkouchack, Mehdi
    [J]. EUROPEAN JOURNAL OF INDUSTRIAL ENGINEERING, 2008, 2 (04) : 428 - 445
  • [22] MLE of Three-Parameter Weibull Distribution in Multi-Data Types
    Wang, Yujin
    Fan, Ying
    Wang, Shunkun
    [J]. ADVANCES IN ROLLING EQUIPMENT AND TECHNOLOGIES, 2011, 145 : 37 - +
  • [23] Three-Parameter Estimation of the Weibull Distribution Based on Least Squares Iteration
    Yang, Xiaoyu
    Song, Jiaxin
    Xie, Liyang
    Zhao, Bingfeng
    [J]. Huanan Ligong Daxue Xuebao/Journal of South China University of Technology (Natural Science), 2023, 51 (02): : 20 - 26
  • [24] Parameter Estimation in a Three-Parameter Lognormal Distribution
    Kozlov V.D.
    Maysuradze A.I.
    [J]. Computational Mathematics and Modeling, 2019, 30 (3) : 302 - 310
  • [25] A New Three-Parameter Inverse Weibull Distribution with Medical and Engineering Applications
    Alotaibi, Refah
    Okasha, Hassan
    Rezk, Hoda
    Nassar, Mazen
    [J]. CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2023, 135 (02): : 1255 - 1274
  • [26] On the Characteristics of the Predicted Wind Power Based on Three-Parameter Weibull Distribution
    Li Zhi-juan
    Xue An-cheng
    Bi Tian-shu
    [J]. 2014 33RD CHINESE CONTROL CONFERENCE (CCC), 2014, : 7077 - 7081
  • [27] Reliability Evaluation on Machining Center Based on Three-Parameter Weibull Distribution
    Ren, Gongchang
    Yang, Zhiwei
    Meng, Bomin
    [J]. FRONTIERS OF ADVANCED MATERIALS AND ENGINEERING TECHNOLOGY, PTS 1-3, 2012, 430-432 : 1645 - +
  • [28] STATISTICAL AND PROBABILISTIC ANALYSIS OF FATIGUE LIFE DATA WITH TWO- AND THREE-PARAMETER WEIBULL DISTRIBUTION FUNCTIONS
    Wei, Zhigang
    Luo, Limin
    Gao, Litang
    Nikbin, Kamran
    [J]. PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE, 2016, VOL 6B, 2017,
  • [29] A three-parameter Weibull statistical analysis of the strength variation of bulk metallic glasses
    Han, Z.
    Tang, L. C.
    Xu, J.
    Li, Y.
    [J]. SCRIPTA MATERIALIA, 2009, 61 (09) : 923 - 926
  • [30] Three-parameter raindrop size distribution modelling at a tropical location
    Maitra, A
    [J]. ELECTRONICS LETTERS, 2000, 36 (10) : 906 - 907