Lagrange interpolation by C1 cubic splines on triangulated quadrangulations

被引:20
|
作者
Nürnberger, G
Schumaker, LL
Zeilfelder, F
机构
[1] Univ Mannheim, Inst Math, D-68131 Mannheim, Germany
[2] Vanderbilt Univ, Dept Math, Ctr Construct Approximat, Nashville, TN 37240 USA
关键词
splines; Lagrange interpolation; quadrangulations coloring;
D O I
10.1023/B:ACOM.0000032044.49282.8a
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We describe local Lagrange interpolation methods based on C-1 cubic splines on triangulations obtained from arbitrary strictly convex quadrangulations by adding one or two diagonals. Our construction makes use of a fast algorithm for coloring quadrangulations, and the overall algorithm has linear complexity while providing optimal order approximation of smooth functions.
引用
收藏
页码:357 / 380
页数:24
相关论文
共 50 条
  • [31] Surface compression using a space of C1 cubic splines with a hierarchical basis
    Hong, D
    Schumaker, LL
    [J]. COMPUTING, 2004, 72 (1-2) : 79 - 92
  • [32] Cubic polynomial and cubic rational C1 sign, monotonicity and convexity preserving Hermite interpolation
    Gabrielides, Nikolaos C.
    Sapidis, Nickolas S.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 357 : 184 - 203
  • [33] A class of C1 rational interpolation splines in one and two dimensions with region control
    Zhu, Yuanpeng
    Wang, Meng
    [J]. COMPUTATIONAL & APPLIED MATHEMATICS, 2020, 39 (02):
  • [34] Scattered data interpolation applying rational quadratic C1 splines on refined triangulations
    Schmidt, JW
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2000, 80 (01): : 27 - 33
  • [35] Approximation of convex contours by cubic, quadratic or convex C1 periodic parametrized splines
    Tijini, A
    Sablonniere, P
    [J]. RAIRO-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1998, 32 (06): : 729 - 746
  • [36] Nonnegative volume matching by cubic C1 splines on Clough-Tocher splits
    Schmidt, JW
    Bastian, M
    Mulansky, B
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2001, 39 (02) : 566 - 586
  • [37] A bivariate C1 subdivision scheme based on cubic half-box splines
    Barendrecht, Pieter
    Sabin, Malcolm
    Kosinka, Jiri
    [J]. COMPUTER AIDED GEOMETRIC DESIGN, 2019, 71 : 77 - 89
  • [38] C1 Hermite interpolation with spatial Pythagorean-hodograph cubic biarcs
    Bastl, Bohumir
    Bizzarri, Michal
    Krajnc, Marjeta
    Lavicka, Miroslav
    Slaba, Kristljna
    Sir, Zbynek
    Vitrih, Vito
    Zagar, Emil
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 257 : 65 - 78
  • [39] INTERPOLATION OF CUBIC FUNCTIONS BY HERMITE SPLINES
    LIGUN, AA
    STORCHAI, VF
    [J]. IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII MATEMATIKA, 1982, (06): : 26 - 29
  • [40] Geometric interpolation by planar cubic G1 splines
    Jernej Kozak
    Marjetka Krajnc
    [J]. BIT Numerical Mathematics, 2007, 47 : 547 - 563