Surface compression using a space of C1 cubic splines with a hierarchical basis

被引:12
|
作者
Hong, D [1 ]
Schumaker, LL
机构
[1] E Tennessee State Univ, Dept Math, Johnson City, TN 37614 USA
[2] Vanderbilt Univ, Dept Math, Ctr Construct Approximat, Nashville, TN 37240 USA
关键词
compression; splines; hierarchial basis;
D O I
10.1007/s00607-003-0048-0
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A method for compressing surfaces associated with C-1 cubic splines defined on triangulated quadrangulations is described. The method makes use of hierarchical bases, and does not require the construction of wavelets.
引用
收藏
页码:79 / 92
页数:14
相关论文
共 50 条
  • [1] Surface Compression Using a Space of C1 Cubic Splines with a Hierarchical Basis
    Don Hong
    Larry L. Schumaker
    [J]. Computing, 2004, 72 : 79 - 92
  • [2] AN EXPLICIT BASIS FOR C1 QUARTIC BIVARIATE SPLINES
    ALFELD, P
    PIPER, B
    SCHUMAKER, LL
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1987, 24 (04) : 891 - 911
  • [3] Lagrange interpolation by C1 cubic splines on triangulated quadrangulations
    Nürnberger, G
    Schumaker, LL
    Zeilfelder, F
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 2004, 21 (3-4) : 357 - 380
  • [4] C1 cubic splines on Powell-Sabin triangulations
    Groselj, Jan
    krajnc, Marjeta
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2016, 272 : 114 - 126
  • [5] Construction of a Family of C1 Convex Integro Cubic Splines
    Tugal, Zhanlav
    Renchin-Ochir, Mijiddorj
    [J]. COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2020, 11 (04): : 527 - 538
  • [6] Local lagrange interpolation by bivariate C1 cubic splines
    Nürnberger, G
    Schumaker, LL
    Zeilfelder, R
    [J]. MATHEMATICAL METHODS FOR CURVES AND SURFACES: OSLO 2000, 2001, : 393 - 403
  • [7] Lagrange Interpolation by C1 Cubic Splines on Triangulated Quadrangulations
    Günther Nürnberger
    Larry L. Schumaker
    Frank Zeilfelder
    [J]. Advances in Computational Mathematics, 2004, 21 : 357 - 380
  • [8] Convex preserving scattered data interpolation using bivariate C1 cubic splines
    Lai, MJ
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 119 (1-2) : 249 - 258
  • [9] Local lagrange interpolation with cubic C1 splines on tetrahedral partitions
    Hecklin, Gero
    Nuernberger, Guenther
    Schumaker, Larry L.
    Zeilfelder, Frank
    [J]. JOURNAL OF APPROXIMATION THEORY, 2009, 160 (1-2) : 89 - 102
  • [10] A normalized basis for C1 cubic super spline space on Powell-Sabin triangulation
    Lamnii, M.
    Mraoui, H.
    Tijini, A.
    Zidna, A.
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2014, 99 : 108 - 124