THE POLAR DECOMPOSITION FOR ADJOINTABLE OPERATORS ON HILBERT C*-MODULES AND n-CENTERED OPERATORS

被引:5
|
作者
Liu, Na [1 ]
Luo, Wei [1 ]
Xu, Qingxiang [1 ]
机构
[1] Shanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Hilbert C*-module; polar decomposition; centered operator; n-centered operator; binormal operator; MOORE-PENROSE INVERSE; LINEAR-OPERATORS;
D O I
10.1215/17358787-2018-0027
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let n be any natural number. The n-centered operator is introduced for adjointable operators on Hilbert C*-modules. Based on the characterizations of the polar decomposition for the product of two adjointable operators, n-centered operators, centered operators as well as binormal operators are clarified, and some results known for the Hilbert space operators are improved. It is proved that for an adjointable operator T, if T is Moore-Penrose invertible and is n-centered, then its Moore-Penrose inverse is also n-centered. A Hilbert space operator T is constructed such that T is n-centered, whereas it fails to be (n + 1)-centered.
引用
收藏
页码:627 / 646
页数:20
相关论文
共 50 条
  • [21] Unbounded operators on Hilbert C*-modules
    Gebhardt, Rene
    Schmuedgen, Konrad
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2015, 26 (11)
  • [22] FRAMES AND OPERATORS IN HILBERT C*-MODULES
    Najati, Abbas
    Saem, M. Mohammadi
    Gavruta, P.
    OPERATORS AND MATRICES, 2016, 10 (01): : 73 - 81
  • [23] Hilbert C*-Modules with Hilbert Dual and C*-Fredholm Operators
    Manuilov, Vladimir
    Troitsky, Evgenij
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2023, 95 (03)
  • [24] Unbounded operators on Hilbert C*-modules over C*-algebras of compact operators
    Guljas, Boris
    JOURNAL OF OPERATOR THEORY, 2008, 59 (01) : 179 - 192
  • [25] ON THE UNIQUENESS OF THE POLAR DECOMPOSITION OF BOUNDED OPERATORS IN HILBERT SPACES
    Ichinose, Wataru
    Iwashita, Kanako
    JOURNAL OF OPERATOR THEORY, 2013, 70 (01) : 175 - 180
  • [26] Fusion Frames for Operators in Hilbert C*-Modules
    Khayyami, M.
    Nazari, A.
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2020, 51 (03): : 791 - 803
  • [27] Derivations on the algebra of operators in hilbert C*-modules
    Peng Tong Li
    De Guang Han
    Wai Shing Tang
    Acta Mathematica Sinica, English Series, 2012, 28 : 1615 - 1622
  • [28] Geometry and topology of operators on Hilbert C*-modules
    Troitsky E.V.
    Journal of Mathematical Sciences, 2000, 98 (2) : 245 - 290
  • [29] Derivations on the algebra of operators in hilbert C*-modules
    Li, Peng Tong
    Han, De Guang
    Tang, Wai Shing
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2012, 28 (08) : 1615 - 1622
  • [30] Derivations on the Algebra of Operators in Hilbert C;-Modules
    Peng Tong LI
    De Guang HAN
    Wai Shing TANG
    Acta Mathematica Sinica,English Series, 2012, (08) : 1615 - 1622