Hilbert C*-Modules with Hilbert Dual and C*-Fredholm Operators

被引:0
|
作者
Manuilov, Vladimir [1 ]
Troitsky, Evgenij [1 ]
机构
[1] Lomonosov Moscow State Univ, Moscow Ctr Fundamental & Appl Math, Dept Mech & Math, Moscow 119991, Russia
基金
俄罗斯科学基金会;
关键词
Hilbert C*-module; Monotone complete C*-algebra; Dual module; Self-dual module; Orthogonal complement; Polar decomposi-tion; A-Fredholm operator;
D O I
10.1007/s00020-023-02737-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study Hilbert C*-modules over a C*-algebra A for which the Banach A-dual module carries a natural structure of Hilbert A module. In this direction we prove that if A is monotone complete, M and N are Hilbert A-modules, M is self-dual, and both T : M? N and its Banach A-dual T' : N'? M' have trivial kernels and cokernels then M ? N'. With the help of this result, for a monotone complete C*-algebra A, we prove that the index of any A-Fredholm operator can be calculated as the difference of its kernel and cokernel as in the Hilbert space case.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Maps preserving semi-Fredholm operators on Hilbert C*-modules
    Aghasizadeh, T.
    Hejazian, S.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 354 (02) : 625 - 629
  • [2] Hypercyclic operators on Hilbert C*-modules
    Ivkovic, Stefan
    FILOMAT, 2024, 38 (06) : 1901 - 1913
  • [3] Unbounded operators on Hilbert C*-modules
    Gebhardt, Rene
    Schmuedgen, Konrad
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2015, 26 (11)
  • [4] FRAMES AND OPERATORS IN HILBERT C*-MODULES
    Najati, Abbas
    Saem, M. Mohammadi
    Gavruta, P.
    OPERATORS AND MATRICES, 2016, 10 (01): : 73 - 81
  • [5] Regular operators on Hilbert C*-modules
    Pal, A
    JOURNAL OF OPERATOR THEORY, 1999, 42 (02) : 331 - 350
  • [6] SEMI-FREDHOLM THEORY ON HILBERT C*-MODULES
    Ivkovic, Stefan
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2019, 13 (04): : 989 - 1016
  • [7] Unbounded operators on Hilbert C*-modules and C*-algebras
    Schmudgen, Konrad
    DIVERSITY AND BEAUTY OF APPLIED OPERATOR THEORY, 2018, 268 : 429 - 441
  • [8] Derivations on the algebra of operators in hilbert C*-modules
    Peng Tong Li
    De Guang Han
    Wai Shing Tang
    Acta Mathematica Sinica, English Series, 2012, 28 : 1615 - 1622
  • [9] Fusion Frames for Operators in Hilbert C*-Modules
    Khayyami, M.
    Nazari, A.
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2020, 51 (03): : 791 - 803
  • [10] Geometry and topology of operators on Hilbert C*-modules
    Troitsky E.V.
    Journal of Mathematical Sciences, 2000, 98 (2) : 245 - 290