Hilbert C*-Modules with Hilbert Dual and C*-Fredholm Operators

被引:0
|
作者
Manuilov, Vladimir [1 ]
Troitsky, Evgenij [1 ]
机构
[1] Lomonosov Moscow State Univ, Moscow Ctr Fundamental & Appl Math, Dept Mech & Math, Moscow 119991, Russia
基金
俄罗斯科学基金会;
关键词
Hilbert C*-module; Monotone complete C*-algebra; Dual module; Self-dual module; Orthogonal complement; Polar decomposi-tion; A-Fredholm operator;
D O I
10.1007/s00020-023-02737-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study Hilbert C*-modules over a C*-algebra A for which the Banach A-dual module carries a natural structure of Hilbert A module. In this direction we prove that if A is monotone complete, M and N are Hilbert A-modules, M is self-dual, and both T : M? N and its Banach A-dual T' : N'? M' have trivial kernels and cokernels then M ? N'. With the help of this result, for a monotone complete C*-algebra A, we prove that the index of any A-Fredholm operator can be calculated as the difference of its kernel and cokernel as in the Hilbert space case.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] A Note on Derivations on the Algebra of Operators in Hilbert C*-Modules
    Mostafa Kafi Moghadam
    M. Miri
    A. R. Janfada
    Mediterranean Journal of Mathematics, 2016, 13 : 1167 - 1175
  • [32] A Hilbert bundle characterization of Hilbert C*-modules
    Elliott, George A.
    Kawamura, Katsunori
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 360 (09) : 4841 - 4862
  • [33] THE POLAR DECOMPOSITION FOR ADJOINTABLE OPERATORS ON HILBERT C*-MODULES AND CENTERED OPERATORS
    Liu, Na
    Luo, Wei
    Xu, Qingxiang
    ADVANCES IN OPERATOR THEORY, 2018, 3 (04): : 855 - 867
  • [34] Dilation of Dual Frame Pairs in Hilbert C*-Modules
    Han, Deguang
    Jing, Wu
    Larson, David
    Li, Pengtong
    Mohapatra, Ram N.
    RESULTS IN MATHEMATICS, 2013, 63 (1-2) : 241 - 250
  • [35] Dilation of Dual Frame Pairs in Hilbert C*-Modules
    Deguang Han
    Wu Jing
    David Larson
    Pengtong Li
    Ram N. Mohapatra
    Results in Mathematics, 2013, 63 : 241 - 250
  • [36] Generalized parallel sum of adjointable operators on Hilbert C*-modules
    Fu, Chunhong
    Moslehian, Mohammad Sal
    Xu, Qingxiang
    Zamani, Ali
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (12): : 2278 - 2296
  • [37] Orthogonality preserving property for pairs of operators on Hilbert C*-modules
    Frank, Michael
    Moslehian, Mohammad Sal
    Zamani, Ali
    AEQUATIONES MATHEMATICAE, 2021, 95 (05) : 867 - 887
  • [38] Elementary operators on Hilbert modules over prime C*-algebras
    Arambasic, Ljiljana
    Gogic, Ilja
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 485 (02)
  • [39] Parallel sum of positive adjointable operators on Hilbert C*-modules
    Gordji, M. Eshaghi
    Fathi, H.
    Hosseinioun, S. A. R.
    AFRIKA MATEMATIKA, 2018, 29 (7-8) : 1081 - 1090
  • [40] Another characterization of Hilbert C*-modules over compact operators
    Arambasic, Ljiljana
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 344 (02) : 735 - 740