Hilbert C*-Modules with Hilbert Dual and C*-Fredholm Operators

被引:0
|
作者
Manuilov, Vladimir [1 ]
Troitsky, Evgenij [1 ]
机构
[1] Lomonosov Moscow State Univ, Moscow Ctr Fundamental & Appl Math, Dept Mech & Math, Moscow 119991, Russia
基金
俄罗斯科学基金会;
关键词
Hilbert C*-module; Monotone complete C*-algebra; Dual module; Self-dual module; Orthogonal complement; Polar decomposi-tion; A-Fredholm operator;
D O I
10.1007/s00020-023-02737-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study Hilbert C*-modules over a C*-algebra A for which the Banach A-dual module carries a natural structure of Hilbert A module. In this direction we prove that if A is monotone complete, M and N are Hilbert A-modules, M is self-dual, and both T : M? N and its Banach A-dual T' : N'? M' have trivial kernels and cokernels then M ? N'. With the help of this result, for a monotone complete C*-algebra A, we prove that the index of any A-Fredholm operator can be calculated as the difference of its kernel and cokernel as in the Hilbert space case.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] EP Matrices of Adjointable Operators on Hilbert C*-Modules
    Li, Xiaopeng
    Huang, Junjie
    Chen, Alatancang
    FILOMAT, 2021, 35 (10) : 3287 - 3292
  • [22] Geometric essence of "compact" operators on Hilbert C*-modules
    Troitsky, Evgenij
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 485 (02)
  • [23] The product of operators with closed range in Hilbert C*-modules
    Sharifi, K.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 435 (05) : 1122 - 1130
  • [24] On majorization and range inclusion of operators on Hilbert C*-modules
    Fang, Xiaochun
    Moslehian, Mohammad Sal
    Xu, Qingxiang
    LINEAR & MULTILINEAR ALGEBRA, 2018, 66 (12): : 2493 - 2500
  • [25] CONTROLLED MULTIPLIERS WITH TWO OPERATORS IN HILBERT C*-MODULES
    Rashidi-Kouchi, M.
    Rahimi, A.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2021, 11 (03): : 872 - 883
  • [26] Diagonalizing operators in Hilbert modules over C*-algebras
    Manuilov V.M.
    Journal of Mathematical Sciences, 2000, 98 (2) : 202 - 244
  • [27] Compact Operators and Uniform Structures in Hilbert C*-Modules
    Troitsky, E. V.
    Fufaev, D. V.
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2020, 54 (04) : 287 - 294
  • [28] Two Equal Range Operators on Hilbert C*-modules
    Janfada, Ali Reza
    Farokhi-Ostad, Javad
    SAHAND COMMUNICATIONS IN MATHEMATICAL ANALYSIS, 2021, 18 (02): : 85 - 96
  • [29] TOPOLOGICAL APPROACH TO UNBOUNDED OPERATORS ON HILBERT C*-MODULES
    Sharifi, Kamran
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2012, 42 (01) : 285 - 292
  • [30] G-frames for operators in Hilbert C*-modules
    Xiang, Zhong-Qi
    Li, Yong-Ming
    TURKISH JOURNAL OF MATHEMATICS, 2016, 40 (02) : 453 - 469