Packing dimensions of the images of Gaussian random fields

被引:2
|
作者
Du, Yali [1 ]
Miao, Junjie [2 ]
Wu, Dongsheng [3 ]
Xiao, Yimin [4 ]
机构
[1] S China Univ Technol, Sch Math, Guangzhou 510641, Guangdong, Peoples R China
[2] E China Normal Univ, Dept Math, Shanghai 200241, Peoples R China
[3] Univ Alabama, Dept Math Sci, Huntsville, AL 35899 USA
[4] Michigan State Univ, Dept Stat & Probabil, E Lansing, MI 48824 USA
关键词
Gaussian random fields; Packing dimension; Packing dimension profiles; Image sets; FRACTIONAL BROWNIAN-MOTION; RANDOM FRACTALS; PROFILES; PROJECTIONS; BOX;
D O I
10.1016/j.spl.2015.07.020
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let X = {X(t) : t is an element of R-N} be a Gaussian random field with values in R-d and let E subset of R-N be a Borel set. We determine the packing dimension of the image set X(E) in terms of the packing dimension profiles in the canonical metric rho of X, which are extensions of the packing dimension profiles of Falconer and Howroyd (1997) and the box-counting dimension profiles of Howroyd (2001). (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:209 / 217
页数:9
相关论文
共 50 条
  • [41] Approximation of maximum of Gaussian random fields
    Hashorva, Enkelejd
    Seleznjev, Oleg
    Tan, Zhongquan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 457 (01) : 841 - 867
  • [42] Fast simulation of Gaussian random fields
    Lang, Annika
    Potthoff, Juergen
    MONTE CARLO METHODS AND APPLICATIONS, 2011, 17 (03): : 195 - 214
  • [43] LEARNING IN GAUSSIAN MARKOV RANDOM FIELDS
    Riedl, Thomas J.
    Singer, Andrew C.
    Choi, Jun Won
    2010 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2010, : 3070 - 3073
  • [44] POLARITY OF POINTS FOR GAUSSIAN RANDOM FIELDS
    Dalang, Robert C.
    Mueller, Carl
    Xiao, Yimin
    ANNALS OF PROBABILITY, 2017, 45 (6B): : 4700 - 4751
  • [45] CONTINUITY PROPERTY OF GAUSSIAN RANDOM FIELDS
    WATANABE, H
    STUDIA MATHEMATICA, 1973, 49 (01) : 81 - 94
  • [46] The curvature effect in Gaussian random fields
    Levada, Alexandre L. M.
    JOURNAL OF PHYSICS-COMPLEXITY, 2022, 3 (03):
  • [47] QUADRATIC VARIATION OF GAUSSIAN RANDOM FIELDS
    DEO, CM
    WONG, SF
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 1978, 23 (03) : 628 - 633
  • [48] EXTREMES OF HOMOGENEOUS GAUSSIAN RANDOM FIELDS
    Debicki, Krzysztof
    Hashorva, Enkelejd
    Soja-Kukiela, Natalia
    JOURNAL OF APPLIED PROBABILITY, 2015, 52 (01) : 55 - 67
  • [49] On fractional Gaussian random fields simulations
    Brouste, Alexandre
    Istas, Jacques
    Lambert-Lacroix, Sophie
    JOURNAL OF STATISTICAL SOFTWARE, 2007, 23 (01): : 1 - 23
  • [50] GAUSSIAN RANDOM FIELDS WITH PROJECTIVE INVARIANCE
    NODA, A
    NAGOYA MATHEMATICAL JOURNAL, 1975, 59 (DEC) : 65 - 76