POLARITY OF POINTS FOR GAUSSIAN RANDOM FIELDS

被引:12
|
作者
Dalang, Robert C. [1 ]
Mueller, Carl [2 ]
Xiao, Yimin [3 ]
机构
[1] Ecole Polytech Fed Lausanne, Inst Math, Stn 8, CH-1015 Lausanne, Switzerland
[2] Univ Rochester, Dept Math, Rochester, NY 14627 USA
[3] Michigan State Univ, Dept Stat & Probabil, A-413 Wells Hall, E Lansing, MI 48824 USA
来源
ANNALS OF PROBABILITY | 2017年 / 45卷 / 6B期
基金
美国国家科学基金会;
关键词
Hitting probabilities; polarity of points; critical dimension; harmonizable representation; stochastic partial differential equations; STOCHASTIC HEAT-EQUATIONS; HITTING PROBABILITIES; BROWNIAN SHEET; HAUSDORFF MEASURE; MULTIPLE POINTS; SYSTEMS; TRAJECTORIES; DIMENSION; DRIVEN; TIMES;
D O I
10.1214/17-AOP1176
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We show that for a wide class of Gaussian random fields, points are polar in the critical dimension. Examples of such random fields include solutions of systems of linear stochastic partial differential equations with deterministic coefficients, such as the stochastic heat equation or wave equation with space-time white noise, or colored noise in spatial dimensions k >= 1. Our approach builds on a delicate covering argument developed by M. Talagrand [Ann. Probab. 23 (1995) 767-775; Probab. Theory Related Fields 112 (1998) 545-563] for the study of fractional Brownian motion, and uses a harmonizable representation of the solutions of these stochastic PDEs.
引用
收藏
页码:4700 / 4751
页数:52
相关论文
共 50 条
  • [1] Multiple points of Gaussian random fields
    Dalang, Robert C.
    Lee, Cheuk Yin
    Mueller, Carl
    Xiao, Yimin
    ELECTRONIC JOURNAL OF PROBABILITY, 2021, 26
  • [2] No repulsion between critical points for planar Gaussian random fields
    Beliaev, Dmitry
    Cammarota, Valentina
    Wigman, Igor
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2020, 25 : 1 - 13
  • [3] Images of Gaussian random fields: Salem sets and interior points
    Shieh, Narn-Rueih
    Xiao, Yimin
    STUDIA MATHEMATICA, 2006, 176 (01) : 37 - 60
  • [4] On critical points of Gaussian random fields under diffeomorphic transformations
    Cheng, Dan
    Schwartzman, Armin
    STATISTICS & PROBABILITY LETTERS, 2020, 158
  • [5] On the expected number of critical points of locally isotropic Gaussian random fields
    Xu, Hao
    Yang, Haoran
    Zeng, Qiang
    BERNOULLI, 2025, 31 (01) : 81 - 105
  • [6] GAUSSIAN RANDOM FIELDS
    GUDDER, SP
    FOUNDATIONS OF PHYSICS, 1978, 8 (3-4) : 295 - 302
  • [7] Fitting Gaussian Markov random fields to Gaussian fields
    Rue, H
    Tjelmeland, H
    SCANDINAVIAN JOURNAL OF STATISTICS, 2002, 29 (01) : 31 - 49
  • [9] Phase correlations at neighboring intensity critical points in Gaussian random wave fields
    Freund, I
    APPLIED OPTICS, 1998, 37 (32): : 7560 - 7567
  • [10] ON THE EXISTENCE OF PATHS BETWEEN POINTS IN HIGH LEVEL EXCURSION SETS OF GAUSSIAN RANDOM FIELDS
    Adler, Robert J.
    Moldavskaya, Elina
    Samorodnitsky, Gennady
    ANNALS OF PROBABILITY, 2014, 42 (03): : 1020 - 1053