K2 of families of curves with non-torsion differences in divisorial support

被引:0
|
作者
Wang, Haixu [1 ]
Liu, Hang [2 ]
Tang, Guoping [1 ]
机构
[1] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
[2] Shenzhen Univ, Coll Math & Stat, Shenzhen 518060, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
K-2; Curve; Beilinson's conjecture; Regulator;
D O I
10.1016/j.jpaa.2021.106915
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct g independent (integral) elements in the kernel of the tame symbol on several families of curves with genus g = 1, 2, 4, 7. Furthermore, we prove that there exist non-torsion divisors P - Q with P, Q in the divisorial support of these K-2 elements when g = 1, 2, which is potentially different from previous constructions. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Numerical verification of Beilinson's conjecture for K2 of hyperelliptic curves
    Dokchitser, T
    de Jeu, R
    Zagier, D
    COMPOSITIO MATHEMATICA, 2006, 142 (02) : 339 - 373
  • [42] Surjectivity of p-adic regulators on K2 of Tate curves
    Masanori Asakura
    Inventiones mathematicae, 2006, 165 : 267 - 324
  • [43] Forcing a classification of non-torsion Abelian groups of size at most 2c with non-trivial convergent sequences
    Bellini, Matheus Koveroff
    Rodrigues, Vinicius de Oliveira
    Tomita, Artur Hideyuki
    TOPOLOGY AND ITS APPLICATIONS, 2021, 296
  • [44] CURVES IN CHARACTERISTIC 2 WITH NON-TRIVIAL 2-TORSION
    Castryck, Wouter
    Streng, Marco
    Testa, Damian
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2014, 8 (04) : 479 - 495
  • [45] Syntomic regulators and p-adic integration II:: K2 of curves
    Besser, A
    ISRAEL JOURNAL OF MATHEMATICS, 2000, 120 (2) : 335 - 359
  • [47] Syntomic regulators andp-adic integration II:K2 of curves
    Amnon Besser
    Israel Journal of Mathematics, 2000, 120 : 335 - 359
  • [48] Cuspidal quintics and surfaces with pg=0, K2=3 and 5-torsion
    Rito, Carlos
    LMS JOURNAL OF COMPUTATION AND MATHEMATICS, 2016, 19 (01): : 42 - 53
  • [49] Potential curves for the ground and numerous highly excited electronic states of K2 and NaK
    Magnier, S.
    Millie, Ph.
    Physical Review A. Atomic, Molecular, and Optical Physics, 1996, 54 (01):
  • [50] Light curves of transneptunian objects from the K2 mission of the Kepler Space Telescope
    Kecskeméthy, Viktória
    Kiss, Csaba
    Szakáts, Róbert
    Pál, András
    Szabó, Gyula M.
    Molnár, László
    Sárneczky, Krisztián
    Vinkó, József
    Szabó, Róbert
    Marton, Gábor
    Farkas-Takács, Anikó
    Kalup, Csilla E.
    Kiss, László L.
    arXiv, 2022,