K2 of families of curves with non-torsion differences in divisorial support

被引:0
|
作者
Wang, Haixu [1 ]
Liu, Hang [2 ]
Tang, Guoping [1 ]
机构
[1] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
[2] Shenzhen Univ, Coll Math & Stat, Shenzhen 518060, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
K-2; Curve; Beilinson's conjecture; Regulator;
D O I
10.1016/j.jpaa.2021.106915
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct g independent (integral) elements in the kernel of the tame symbol on several families of curves with genus g = 1, 2, 4, 7. Furthermore, we prove that there exist non-torsion divisors P - Q with P, Q in the divisorial support of these K-2 elements when g = 1, 2, which is potentially different from previous constructions. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] The K2 Light Curves and Stunted Outbursts of AC Cnc
    Schlegel, E. M.
    Honeycutt, R. K.
    ASTROPHYSICAL JOURNAL, 2019, 876 (02):
  • [32] Light curves of ten Centaurs from K2 measurements
    Marton, Gabor
    Kiss, Csaba
    Molnar, Laszlo
    Pal, Andras
    Farkas-Takacs, Aniko
    Szabo, Gyula M.
    Mueller, Thomas
    Ali-Lagoa, Victor
    Szabo, Robert
    Vinko, Jozsef
    Sarneczky, Krisztian
    Kalup, Csilla E.
    Marciniak, Anna
    Duffard, Rene
    Kiss, Laszlo L.
    ICARUS, 2020, 345
  • [34] POTENTIAL ENERGY CURVES + DISSOCIATION PRODUCTS OF K2 MOLECULE
    RAI, DK
    TRIPATHI, AN
    CANADIAN JOURNAL OF PHYSICS, 1964, 42 (03) : 452 - &
  • [35] Beilinson-Kato elements in K2 of modular curves
    Brunault, Francois
    ACTA ARITHMETICA, 2008, 134 (03) : 283 - 298
  • [36] TORSION IN K2 OF FIELDS AND 0-CYCLES ON RATIONAL SURFACES
    MURTHY, MP
    ROY, A
    COMMENTARII MATHEMATICI HELVETICI, 1984, 59 (02) : 165 - 186
  • [37] Retrieval of the Fluid Love Number k2 in Exoplanetary Transit Curves
    Hellard, Hugo
    Csizmadia, Szilard
    Padovan, Sebastiano
    Rauer, Heike
    Cabrera, Juan
    Sohl, Frank
    Spohn, Tilman
    Breuer, Doris
    ASTROPHYSICAL JOURNAL, 2019, 878 (02):
  • [38] Surjectivity of p-adic regulators on K2 of Tate curves
    Masanori Asakura
    Inventiones mathematicae, 2008, 172 : 213 - 229
  • [39] Surjectivity of p-adic regulators on K2 of Tate curves
    Asakura, Masanori
    INVENTIONES MATHEMATICAE, 2006, 165 (02) : 267 - 324
  • [40] Forcing a classification of non-torsion Abelian groups of size at most 2c with non-trivial convergent sequences
    Bellini, Matheus Koveroff
    de Oliveira Rodrigues, Vinicius
    Tomita, Artur Hideyuki
    arXiv, 2020,