Scavenging Vibration Energy from Seismically-isolated Bridges Using an Electromagnetic Harvester

被引:3
|
作者
Lu, Qiuchen [1 ]
Loong, Chengning [1 ]
Chang, Chih-Chen [1 ]
Dimitrakopoulos, Elias G. [1 ]
机构
[1] Hong Kong Univ Sci & Technol, Dept Civil & Environm Engn, Hong Kong, Hong Kong, Peoples R China
关键词
Base isolation; electromagnetic energy harvester; vibration control;
D O I
10.1117/12.2044839
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
The increasing worldwide efforts in securing renewable energy sources increase incentive for civil engineers to investigate whether the kinetic energy associated with the vibration of larger-scale structures can be harvested. Such a research remains challenging and incomplete despite that hundreds of related articles have been published in the last decade. Base isolation is one of the most popular means of protecting a civil engineering structure against earthquake forces. Seismic isolation hinges on the decoupling of the structure from the shaking ground, hence protecting the structure from stress and damage during an earthquake excitation. The low stiffness isolator inserted between the structure and the ground dominates the response leading to a structural system of longer vibration period. As a consequence of this period shift, the spectral acceleration is reduced, but higher response displacements are produced. To mitigate this side effect, usually isolators are combined with the use of additional energy dissipation. In this study, the feasibility of scavenging the need-to-be dissipated energy from the isolator installed in a seismically isolated bridge using an electromagnetic (EM) energy harvester is investigated. The EM energy harvester consists of an energy harvesting circuit and a capacitor for energy storage. A mathematical model for this proposed EM energy harvester is developed and implemented on an idealized base-isolated single-degree-of-freedom system. The effect of having this EM energy harvester on the performance of this seismic isolated system is analyzed and discussed. The potential of installing such an EM energy harvester on a seismically isolated bridge is also addressed.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Wireless Power Transmission by MEMS Vibration Energy Harvester Using Electromagnetic Torque
    Nomura, Akihiro
    Kanda, Kensuke
    Fujita, Takayuki
    Kuroki, Tsubasa
    Maenaka, Kazusuke
    SENSORS AND MATERIALS, 2024, 36 (12) : 5117 - 5128
  • [22] MODELING OF AN ELECTROMAGNETIC VIBRATION ENERGY HARVESTER WITH MOTION MAGNIFICATION
    Li, Zhongjie
    Brindak, Zachary
    Zuo, Lei
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2011, VOL 7, PTS A AND B, 2012, : 285 - 293
  • [23] Theoretical and experimental study of an electromagnetic vibration energy harvester
    Su, Yufeng
    Zhang, Kun
    Gong, Qi
    FERROELECTRICS, 2019, 551 (01) : 60 - 73
  • [24] Analysis and design of a micro electromagnetic vibration energy harvester
    Wang, Xiongshi
    Zhang, Binzhen
    Duan, Junping
    Xu, Suping
    PROCEEDINGS OF THE 2016 6TH INTERNATIONAL CONFERENCE ON MACHINERY, MATERIALS, ENVIRONMENT, BIOTECHNOLOGY AND COMPUTER (MMEBC), 2016, 88 : 1476 - 1482
  • [25] Research on Electromagnetic Vibration Energy Harvester for Casing of Transformers
    Chen, Liangyuan
    Li, Dajian
    Zhou, Ke
    Zhao, Jian
    2022 9TH INTERNATIONAL FORUM ON ELECTRICAL ENGINEERING AND AUTOMATION, IFEEA, 2022, : 55 - 61
  • [26] ANCHORLESS DESIGN OF ELECTROMAGNETIC VIBRATION ENERGY HARVESTER FOR RAILROAD
    Lin, Teng
    Wang, Lirong
    Zuo, Lei
    PROCEEDINGS OF THE ASME 8TH ANNUAL DYNAMIC SYSTEMS AND CONTROL CONFERENCE, 2015, VOL 2, 2016,
  • [27] Design and fabrication of a micro electromagnetic vibration energy harvester
    Wang Peng
    Li Wei
    Che Lufeng
    JOURNAL OF SEMICONDUCTORS, 2011, 32 (10)
  • [28] Design and fabrication of a micro electromagnetic vibration energy harvester
    王鹏
    李伟
    车录锋
    半导体学报, 2011, 32 (10) : 74 - 77
  • [29] Design and fabrication of transverse electromagnetic vibration energy harvester
    Li, Wei
    Che, Lu-Feng
    Wang, Yue-Lin
    Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2013, 21 (03): : 694 - 700
  • [30] Multiple cell configuration electromagnetic vibration energy harvester
    Marin, Anthony
    Bressers, Scott
    Priya, Shashank
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2011, 44 (29)