Detection of Dummy Trajectories Using Convolutional Neural Networks

被引:3
|
作者
Pan, Jiaji [1 ]
Liu, Yining [1 ]
Zhang, Weiming [2 ]
机构
[1] Guilin Univ Elect Technol, Sch Comp & Informat Secur, Guilin, Peoples R China
[2] Univ Sci & Technol China, CAS Key Lab Elect Space Informat, Hefei 230026, Anhui, Peoples R China
关键词
LOCATION; ANONYMITY;
D O I
10.1155/2019/8431074
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Nowadays, privacy in trajectory is an important issue in the coming big data era. In order to provide better protection for trajectory privacy, a number of solutions have been proposed in the literature, and the dummy trajectory method has attracted great interests in both academia and industry recently due to the following advantages: (1) neither a third-party server nor other parties' cooperation is necessary; (2) location-based services are not influenced; and (3) its algorithm is relatively simple and efficient. However, most of trajectory privacy generations usually consider the geometric shape of the trajectory; meanwhile the real human mobility feature is usually neglected. In fact, the real trajectory is not the product of random probability. In this paper, convolutional neural network (CNN) is used as the learning machine to train with lots of the real trajectory and the generated dummy trajectory sets. Then, the trained classifier is used to distinguish the dummy from the real trajectory. Experiments demonstrate that the method using CNN is very efficient, and more than 90% of dummy trajectories can be detected. Moreover, the real trajectory erroneous judgment rate is below 10% for most of real trajectories.
引用
收藏
页数:12
相关论文
共 50 条
  • [11] Detection of Cattle Using Drones and Convolutional Neural Networks
    Rivas, Alberto
    Chamoso, Pablo
    Gonzalez-Briones, Alfonso
    Manuel Corchado, Juan
    SENSORS, 2018, 18 (07)
  • [12] Melanoma Detection Using Regular Convolutional Neural Networks
    Abu Ali, Aya
    Al-Marzouqi, Hasan
    2017 INTERNATIONAL CONFERENCE ON ELECTRICAL AND COMPUTING TECHNOLOGIES AND APPLICATIONS (ICECTA), 2017, : 363 - 367
  • [13] QR Code Detection Using Convolutional Neural Networks
    Chou, Tzu-Han
    Ho, Chuan-Sheng
    Kuo, Yan-Fu
    2015 INTERNATIONAL CONFERENCE ON ADVANCED ROBOTICS AND INTELLIGENT SYSTEMS (ARIS), 2015,
  • [14] Fingerprint Liveness Detection Using Convolutional Neural Networks
    Nogueira, Rodrigo Frassetto
    Lotufo, Roberto de Alencar
    Machado, Rubens Campos
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2016, 11 (06) : 1206 - 1213
  • [15] Fall detection using mixtures of convolutional neural networks
    Thao V. Ha
    Hoang M. Nguyen
    Son H. Thanh
    Binh T. Nguyen
    Multimedia Tools and Applications, 2024, 83 : 18091 - 18118
  • [16] Android Botnet Detection using Convolutional Neural Networks
    Hojjatinia, Sina
    Hamzenejadi, Sajad
    Mohseni, Hadis
    2020 28TH IRANIAN CONFERENCE ON ELECTRICAL ENGINEERING (ICEE), 2020, : 674 - 679
  • [17] Facial Smile Detection Using Convolutional Neural Networks
    Dinh Viet Sang
    Le Tran Bao Cuong
    Do Phan Thuan
    2017 9TH INTERNATIONAL CONFERENCE ON KNOWLEDGE AND SYSTEMS ENGINEERING (KSE 2017), 2017, : 136 - 141
  • [18] Stroke Lesion Detection Using Convolutional Neural Networks
    Pereira, Danillo Roberto
    Reboucas Filho, Pedro P.
    de Rosa, Gustavo Henrique
    Papa, Joao Paulo
    de Albuquerque, Victor Hugo C.
    2018 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2018,
  • [19] Microaneurysm detection using fully convolutional neural networks
    Chudzik, Piotr
    Majumdar, Somshubra
    Caliva, Francesco
    Al-Diri, Bashir
    Hunter, Andrew
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2018, 158 : 185 - 192