Melanoma Detection Using Regular Convolutional Neural Networks

被引:0
|
作者
Abu Ali, Aya [1 ]
Al-Marzouqi, Hasan [1 ]
机构
[1] Khalifa Univ Sci & Technol, Petr Inst, Dept Elect & Comp Engn, Abu Dhabi, U Arab Emirates
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we propose a method for classifying melanoma images into benign and malignant using Convolutional Neural Networks (CNNs). Having an automated method for melanoma detection will assist dermatologists in the early diagnosis of this type of skin cancer. A regular convolutional network employing a modest number of parameters is used to detect melanoma images. The architecture is used to classify the dataset of the ISBI 2016 challenge in melanoma classification. The dataset was not segmented or cropped prior to classification. The proposed method was then evaluated for accuracy, sensitivity and specificity. Comparisons with the winning entry in the competition demonstrate that one can achieve a performance level comparable to state-of-the-art using standard convolutional neural network architectures that employ a lower number of parameters.
引用
收藏
页码:363 / 367
页数:5
相关论文
共 50 条
  • [1] Melanoma Disease Detection Using Convolutional Neural Networks
    Sanketh, Ravva Sai
    Bala, M. Madhu
    Reddy, Panati Viswa Narendra
    Kumar, G. V. S. Phani
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND CONTROL SYSTEMS (ICICCS 2020), 2020, : 1031 - 1037
  • [2] Using Local Binary Patterns and Convolutional Neural Networks for Melanoma Detection
    Iqbal, Saeed
    Qureshi, Adnan N.
    Akter, Mukti
    [J]. INTELLIGENT SYSTEMS AND APPLICATIONS, VOL 2, 2020, 1038 : 782 - 789
  • [3] Acral melanoma detection using dermoscopic images and convolutional neural networks
    Abbas, Qaiser
    Ramzan, Farheen
    Ghani, Muhammad Usman
    [J]. VISUAL COMPUTING FOR INDUSTRY BIOMEDICINE AND ART, 2021, 4 (01)
  • [4] Acral melanoma detection using dermoscopic images and convolutional neural networks
    Qaiser Abbas
    Farheen Ramzan
    Muhammad Usman Ghani
    [J]. Visual Computing for Industry, Biomedicine, and Art, 4
  • [5] Melanoma Detection from Dermatoscopic Images using Deep Convolutional Neural Networks
    Naronglerdrit, Prasitthichai
    Mporas, Iosif
    Paraskevas, Michael
    Kapoulas, Vaggelis
    [J]. PROCEEDINGS OF THE 2020 INTERNATIONAL CONFERENCE ON BIOMEDICAL INNOVATIONS AND APPLICATIONS (BIA 2020), 2020, : 14 - 17
  • [6] Melanoma Detection Using Convolutional Neural Network
    Zhang, Runyuan
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS AND COMPUTER ENGINEERING (ICCECE), 2021, : 75 - 78
  • [7] DermaDL: advanced Convolutional Neural Networks for automated melanoma detection
    Rodrigues-Jr, Jose F.
    Brandoli, Bruno
    Amer-Yahia, Sihem
    [J]. 2020 IEEE 33RD INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS(CBMS 2020), 2020, : 504 - 509
  • [8] Automatic Detection of Melanoma with Yolo Deep Convolutional Neural Networks
    Nie, Yali
    Sommella, Paolo
    O'Nils, Mattias
    Liguori, Consolatina
    Lundgren, Jan
    [J]. 2019 E-HEALTH AND BIOENGINEERING CONFERENCE (EHB), 2019,
  • [9] Convolutional neural networks for the detection of malignant melanoma in dermoscopy images
    Kwiatkowska, Dominika
    Kluska, Piotr
    Reich, Adam
    [J]. POSTEPY DERMATOLOGII I ALERGOLOGII, 2021, 38 (03): : 412 - 420
  • [10] Lesion Segmentation and Automated Melanoma Detection using Deep Convolutional Neural Networks and XGBoost
    Hung N Pham
    Koay, Chin Yang
    Chakraborty, Tanmoy
    Gupta, Sudhanshu
    Tan, Boon Leong
    Wu, Huaqing
    Vardhan, Apurva
    Quang H Nguyen
    Palaparthi, Nirmal Raja
    Binh P Nguyen
    Chua, Matthew C. H.
    [J]. PROCEEDINGS OF 2019 INTERNATIONAL CONFERENCE ON SYSTEM SCIENCE AND ENGINEERING (ICSSE), 2019, : 142 - 147