Attack detection in water distribution systems using machine learning

被引:49
|
作者
Ramotsoela, Daniel T. [1 ]
Hancke, Gerhard P. [1 ,2 ]
Abu-Mahfouz, Adnan M. [1 ,3 ]
机构
[1] Univ Pretoria, Dept Elect Elect & Comp Engn, ZA-0002 Pretoria, South Africa
[2] City Univ Hong Kong, Dept Comp Sci, Kowloon, Hong Kong, Peoples R China
[3] CSIR, ZA-0184 Pretoria, South Africa
关键词
Anomaly detection; Machine learning; System security; Cyber-physical systems; Critical infrastructure; Water monitoring; ANOMALY DETECTION;
D O I
10.1186/s13673-019-0175-8
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The threat to critical water system infrastructure has increased in recent years as is evident from the increasing number of reported attacks against these systems. Preventative security mechanisms are often not enough to keep attackers out so a second layer of security in the form of intrusion detection is paramount in order to limit the damage of successful attacks. In this paper several traditional anomaly detection techniques are evaluated in the context of attack detection in water distribution systems. These algorithms were centrally trained on the entire feature space and compared to multi-stage detection techniques that were designed to isolate both local and global anomalies. A novel ensemble technique that combines density-based and parametric algorithms was also developed and tested in the application environment. The traditional techniques had comparable results to the multi-stage systems and when used in conjunction with a local anomaly detector the performances of these algorithms were greatly improved. The developed ensemble technique also had promising results outperforming the density-based techniques and having comparable results to the parametric algorithms.
引用
收藏
页数:22
相关论文
共 50 条
  • [31] A two-phase approach for leak detection and localization in water distribution systems using wavelet decomposition and machine learning
    Adraoui, Meriem
    Azmi, Rida
    Chenal, Jerome
    Diop, El Bachir
    Abdem, Seyid Abdellahi Ebnou
    Serbouti, Imane
    Hlal, Mohammed
    Bounabi, Mariem
    COMPUTERS & INDUSTRIAL ENGINEERING, 2024, 197
  • [32] USING MACHINE LEARNING FOR INTRUSION DETECTION SYSTEMS
    Quang-Vinh Dang
    COMPUTING AND INFORMATICS, 2022, 41 (01) : 12 - 33
  • [33] Experiments based comparative evaluations of machine learning techniques for leak detection in water distribution systems
    Kammoun, Maryam
    Kammoun, Amina
    Abid, Mohamed
    WATER SUPPLY, 2022, 22 (01) : 628 - 642
  • [34] HTTP header based phishing attack detection using machine learning
    Shukla, Sanjeev
    Misra, Manoj
    Varshney, Gaurav
    TRANSACTIONS ON EMERGING TELECOMMUNICATIONS TECHNOLOGIES, 2024, 35 (01)
  • [35] A Novel Machine Learning Framework for Advanced Attack Detection using SDN
    Abou El Houda, Zakaria
    Hafid, Abdelhakim Senhaji
    Khoukhi, Lyes
    2021 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2021,
  • [36] Active Directory Kerberoasting Attack: Detection using Machine Learning Techniques
    Kotlaba, Lukas
    Buchovecka, Simona
    Lorencz, Robert
    ICISSP: PROCEEDINGS OF THE 7TH INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS SECURITY AND PRIVACY, 2021, : 376 - 383
  • [37] Distributed denial of service attack detection using machine learning classifiers
    Gautam, R.
    Padmavathy, R.
    INTERNATIONAL JOURNAL OF AD HOC AND UBIQUITOUS COMPUTING, 2024, 46 (03)
  • [38] Web Attack Intrusion Detection System Using Machine Learning Techniques
    Baklizi, Mahmoud Khalid
    Atoum, Issa
    Alkhazaleh, Mohammad
    Kanaker, Hasan
    Abdullah, Nibras
    Al-Wesabi, Ola A.
    Otoom, Ahmed Ali
    INTERNATIONAL JOURNAL OF ONLINE AND BIOMEDICAL ENGINEERING, 2024, 20 (03) : 24 - 38
  • [39] Performance evaluation of Botnet DDoS attack detection using machine learning
    Tong Anh Tuan
    Hoang Viet Long
    Le Hoang Son
    Raghvendra Kumar
    Ishaani Priyadarshini
    Nguyen Thi Kim Son
    Evolutionary Intelligence, 2020, 13 : 283 - 294
  • [40] Homoglyph Attack Detection Model Using Machine Learning and Hash Function
    Almuhaideb, Abdullah M.
    Aslam, Nida
    Alabdullatif, Almaha
    Altamimi, Sarah
    Alothman, Shooq
    Alhussain, Amnah
    Aldosari, Waad
    Alsunaidi, Shikah J.
    Alissa, Khalid A.
    JOURNAL OF SENSOR AND ACTUATOR NETWORKS, 2022, 11 (03)