Attack detection in water distribution systems using machine learning

被引:49
|
作者
Ramotsoela, Daniel T. [1 ]
Hancke, Gerhard P. [1 ,2 ]
Abu-Mahfouz, Adnan M. [1 ,3 ]
机构
[1] Univ Pretoria, Dept Elect Elect & Comp Engn, ZA-0002 Pretoria, South Africa
[2] City Univ Hong Kong, Dept Comp Sci, Kowloon, Hong Kong, Peoples R China
[3] CSIR, ZA-0184 Pretoria, South Africa
关键词
Anomaly detection; Machine learning; System security; Cyber-physical systems; Critical infrastructure; Water monitoring; ANOMALY DETECTION;
D O I
10.1186/s13673-019-0175-8
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The threat to critical water system infrastructure has increased in recent years as is evident from the increasing number of reported attacks against these systems. Preventative security mechanisms are often not enough to keep attackers out so a second layer of security in the form of intrusion detection is paramount in order to limit the damage of successful attacks. In this paper several traditional anomaly detection techniques are evaluated in the context of attack detection in water distribution systems. These algorithms were centrally trained on the entire feature space and compared to multi-stage detection techniques that were designed to isolate both local and global anomalies. A novel ensemble technique that combines density-based and parametric algorithms was also developed and tested in the application environment. The traditional techniques had comparable results to the multi-stage systems and when used in conjunction with a local anomaly detector the performances of these algorithms were greatly improved. The developed ensemble technique also had promising results outperforming the density-based techniques and having comparable results to the parametric algorithms.
引用
收藏
页数:22
相关论文
共 50 条
  • [21] Optimal attack detection using an enhanced machine learning algorithm
    Theja, Reddy Sai Sindhu
    Shyam, Gopal K.
    Makka, Shanthi
    INTERNATIONAL JOURNAL OF GRID AND UTILITY COMPUTING, 2025, 16 (01)
  • [22] Practical Challenges of Attack Detection in Microgrids Using Machine Learning
    Ramotsoela, Daniel T. T.
    Hancke, Gerhard P. P.
    Abu-Mahfouz, Adnan M. M.
    JOURNAL OF SENSOR AND ACTUATOR NETWORKS, 2023, 12 (01)
  • [23] EFFICIENT DDoS ATTACK DETECTION USING MACHINE LEARNING TECHNIQUES
    Nazarudeen, Fathima
    Sundar, Sumod
    2022 IEEE INTERNATIONAL POWER AND RENEWABLE ENERGY CONFERENCE, IPRECON, 2022,
  • [24] DDoS Attack Detection and Mitigation in SDN using Machine Learning
    Khashab, Fatima
    Moubarak, Joanna
    Feghali, Antoine
    Bassil, Carole
    PROCEEDINGS OF THE 2021 IEEE 7TH INTERNATIONAL CONFERENCE ON NETWORK SOFTWARIZATION (NETSOFT 2021): ACCELERATING NETWORK SOFTWARIZATION IN THE COGNITIVE AGE, 2021, : 395 - 401
  • [25] Detection of adversarial phishing attack using machine learning techniques
    Sudar, K. Muthamil
    Rohan, M.
    Vignesh, K.
    SADHANA-ACADEMY PROCEEDINGS IN ENGINEERING SCIENCES, 2024, 49 (03):
  • [26] DoS Attack Detection using Machine Learning and Neural Network
    Wankhede, Shreekhand
    Kshirsagar, Deepak
    2018 FOURTH INTERNATIONAL CONFERENCE ON COMPUTING COMMUNICATION CONTROL AND AUTOMATION (ICCUBEA), 2018,
  • [27] Email bombing attack detection and mitigation using machine learning
    Shukla, Sanjeev
    Misra, Manoj
    Varshney, Gaurav
    INTERNATIONAL JOURNAL OF INFORMATION SECURITY, 2024, 23 (04) : 2939 - 2949
  • [28] Detection of Cyber Attacks on Voltage Regulation in Distribution Systems Using Machine Learning
    Bhusal, Narayan
    Gautam, Mukesh
    Benidris, Mohammed
    IEEE ACCESS, 2021, 9 : 40402 - 40416
  • [29] Efficient machine learning for attack detection
    Wressnegger, Christian
    IT-INFORMATION TECHNOLOGY, 2020, 62 (5-6): : 279 - 286
  • [30] A Survey on Attack Detection Methods For IOT Using Machine Learning And Deep Learning
    Babu, Meenigi Ramesh
    Veena, K. N.
    ICSPC'21: 2021 3RD INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATION (ICPSC), 2021, : 625 - 630