Acceleration of Sparse Vector Autoregressive Modeling using GPUs

被引:0
|
作者
Venkataramanan, Shreenivas Bharadwaj [1 ]
Garg, Rahul [2 ]
Sabharwal, Yogish [3 ]
机构
[1] Univ Calif San Diego, Comp Sci & Engn, La Jolla, CA 92093 USA
[2] Indian Inst Technol, New Delhi, India
[3] IBM Res India, New Delhi, India
来源
2019 IEEE 26TH INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING, DATA, AND ANALYTICS (HIPC) | 2019年
关键词
MULTIVARIATE TIME-SERIES; PREDICTION; REGRESSION; SELECTION; PARALLEL;
D O I
10.1109/HiPC.2019.00029
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Autoregressive modeling is a standard approach to mathematically describe the behavior of a time series. The vector autoregressive model (VAR) describes the behavior of multiple time series. The VAR modeling is a fundamental approach which has applications in multiple domains such as time series forecasting, Granger causality, system identification and stochastic control. Solving high dimensional VAR model requires the use of sparse regression techniques from machine learning. Efficient algorithms to solve the sparse regression problems are too slow to be useful in solving large high dimensional sparse VAR modeling problems. Earlier application of sparse VAR modeling in the neuroimaging domain required the use of the IBMs Blue Gene supercomputers. In this paper we describe an approach to accelerate large scale sparse VAR problems when solved using the lasso regression algorithm on state-of-the-art GPUs. Our accelerated implementation on NVIDIA GTX 1080 GPU takes a few seconds to solve the problem, reaching up to 4 TFLOPs of single-precision performance which is close to 55% of its peak matrix-multiply (GEMM) performance.
引用
收藏
页码:163 / 172
页数:10
相关论文
共 50 条
  • [41] Iterative Sparse Matrix-Vector Multiplication for Integer Factorization on GPUs
    Schmidt, Bertil
    Aribowo, Hans
    Dang, Hoang-Vu
    EURO-PAR 2011 PARALLEL PROCESSING, PT 2, 2011, 6853 : 413 - 424
  • [42] Accelerating Sparse Matrix-Vector Multiplication on GPUs using Bit-Representation-Optimized Schemes
    Tang, Wai Teng
    Tan, Wen Jun
    Ray, Rajarshi
    Wong, Yi Wen
    Chen, Weiguang
    Kuo, Shyh-hao
    Goh, Rick Siow Mong
    Turner, Stephen John
    Wong, Weng-Fai
    2013 INTERNATIONAL CONFERENCE FOR HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS (SC), 2013,
  • [43] Portable Acceleration of Materials Modeling Software: CASTEP, GPUs, and OpenACC
    Smith, Matthew
    Tamerus, Arjen
    Hasnip, Phil
    COMPUTING IN SCIENCE & ENGINEERING, 2022, 24 (01) : 46 - 55
  • [44] Circular conditional autoregressive modeling of vector fields
    Modlin, Danny
    Fuentes, Montserrat
    Reich, Brian
    ENVIRONMETRICS, 2012, 23 (01) : 46 - 53
  • [45] Finite sample effects in vector autoregressive modeling
    de Waele, S
    Broersen, PMT
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2002, 51 (05) : 917 - 922
  • [46] Mixture Multilevel Vector-Autoregressive Modeling
    Ernst, Anja F.
    Timmerman, Marieke E.
    Ji, Feng
    Jeronimus, Bertus F.
    Albers, Casper J.
    PSYCHOLOGICAL METHODS, 2024, 29 (01) : 137 - 154
  • [47] The role of vector AutoRegressive modeling in subspace identification
    Dipartimento di Tecnica e Gestione dei Sistemi Industriali, Università di Padova , stradella San Nicola, 3, 36100 Vicenza, Italy
    1600, 3646-3651 (2006):
  • [48] The role of vector AutoRegressive modeling in subspace identification
    Chiuso, Alessandro
    PROCEEDINGS OF THE 45TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-14, 2006, : 3646 - 3651
  • [49] Automatic Tuning of Sparse Matrix-Vector Multiplication for CRS format on GPUs
    Yoshizawa, Hiroki
    Takahashi, Daisuke
    15TH IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND ENGINEERING (CSE 2012) / 10TH IEEE/IFIP INTERNATIONAL CONFERENCE ON EMBEDDED AND UBIQUITOUS COMPUTING (EUC 2012), 2012, : 130 - 136
  • [50] Fast Sparse Matrix-Vector Multiplication on GPUs: Implications for Graph Mining
    Yang, Xintian
    Parthasarathy, Srinivasan
    Sadayappan, P.
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2011, 4 (04): : 231 - 242