Acceleration of Sparse Vector Autoregressive Modeling using GPUs

被引:0
|
作者
Venkataramanan, Shreenivas Bharadwaj [1 ]
Garg, Rahul [2 ]
Sabharwal, Yogish [3 ]
机构
[1] Univ Calif San Diego, Comp Sci & Engn, La Jolla, CA 92093 USA
[2] Indian Inst Technol, New Delhi, India
[3] IBM Res India, New Delhi, India
来源
2019 IEEE 26TH INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING, DATA, AND ANALYTICS (HIPC) | 2019年
关键词
MULTIVARIATE TIME-SERIES; PREDICTION; REGRESSION; SELECTION; PARALLEL;
D O I
10.1109/HiPC.2019.00029
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Autoregressive modeling is a standard approach to mathematically describe the behavior of a time series. The vector autoregressive model (VAR) describes the behavior of multiple time series. The VAR modeling is a fundamental approach which has applications in multiple domains such as time series forecasting, Granger causality, system identification and stochastic control. Solving high dimensional VAR model requires the use of sparse regression techniques from machine learning. Efficient algorithms to solve the sparse regression problems are too slow to be useful in solving large high dimensional sparse VAR modeling problems. Earlier application of sparse VAR modeling in the neuroimaging domain required the use of the IBMs Blue Gene supercomputers. In this paper we describe an approach to accelerate large scale sparse VAR problems when solved using the lasso regression algorithm on state-of-the-art GPUs. Our accelerated implementation on NVIDIA GTX 1080 GPU takes a few seconds to solve the problem, reaching up to 4 TFLOPs of single-precision performance which is close to 55% of its peak matrix-multiply (GEMM) performance.
引用
收藏
页码:163 / 172
页数:10
相关论文
共 50 条
  • [31] Dense and Sparse Matrix-Vector Multiplication on Maxwell GPUs with PyCUDA
    Nurudin Alvarez, Francisco
    Antonio Ortega-Toro, Jose
    Ujaldon, Manuel
    HIGH PERFORMANCE COMPUTING CARLA 2016, 2017, 697 : 219 - 229
  • [32] Load-balancing Sparse Matrix Vector Product Kernels on GPUs
    Anzt, Hartwig
    Cojean, Terry
    Chen, Yen-Chen
    Dongarra, Jack
    Flegar, Goran
    Nayak, Pratik
    Tomov, Stanimire
    Tsai, Yuhsiang M.
    Wang, Weichung
    ACM TRANSACTIONS ON PARALLEL COMPUTING, 2020, 7 (01)
  • [33] Implementing Blocked Sparse Matrix-Vector Multiplication on NVIDIA GPUs
    Monakov, Alexander
    Avetisyan, Arutyun
    EMBEDDED COMPUTER SYSTEMS: ARCHITECTURES, MODELING, AND SIMULATION, PROCEEDINGS, 2009, 5657 : 289 - 297
  • [34] Efficient Sparse-Matrix Multi-Vector Product on GPUs
    Hong, Changwan
    Sukumaran-Rajam, Aravind
    Bandyopadhyay, Bortik
    Kim, Jinsung
    Kurt, Sureyya Emre
    Nisa, Israt
    Sabhlok, Shivani
    Catalyurek, Umit V.
    Parthasarathy, Srinivasan
    Sadayappan, P.
    HPDC '18: PROCEEDINGS OF THE 27TH INTERNATIONAL SYMPOSIUM ON HIGH-PERFORMANCE PARALLEL AND DISTRIBUTED COMPUTING, 2018, : 66 - 79
  • [35] Scaleable Sparse Matrix-Vector Multiplication with Functional Memory and GPUs
    Tanabe, Noboru
    Ogawa, Yuuka
    Takata, Masami
    Joe, Kazuki
    PROCEEDINGS OF THE 19TH INTERNATIONAL EUROMICRO CONFERENCE ON PARALLEL, DISTRIBUTED, AND NETWORK-BASED PROCESSING, 2011, : 101 - 108
  • [36] A Memory Transaction Model for Sparse Matrix-Vector Multiplications on GPUs
    Keklikian, Thalie
    Langlois, J. M. Pierre
    Savaria, Yvon
    2014 IEEE 12TH INTERNATIONAL NEW CIRCUITS AND SYSTEMS CONFERENCE (NEWCAS), 2014, : 309 - 312
  • [37] Multiple-precision sparse matrix-vector multiplication on GPUs
    Isupov, Konstantin
    JOURNAL OF COMPUTATIONAL SCIENCE, 2022, 61
  • [38] Optimization of Sparse Matrix-Vector Multiplication with Variant CSR on GPUs
    Feng, Xiaowen
    Jin, Hai
    Zheng, Ran
    Hu, Kan
    Zeng, Jingxiang
    Shao, Zhiyuan
    2011 IEEE 17TH INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED SYSTEMS (ICPADS), 2011, : 165 - 172
  • [39] Sparse Matrix-Vector Product for the bmSparse Matrix Format in GPUs
    Berger, Gonzalo
    Dufrechou, Ernesto
    Ezzatti, Pablo
    EURO-PAR 2023: PARALLEL PROCESSING WORKSHOPS, PT I, EURO-PAR 2023, 2024, 14351 : 246 - 256
  • [40] TileSpMV: A Tiled Algorithm for Sparse Matrix-Vector Multiplication on GPUs
    Niu, Yuyao
    Lu, Zhengyang
    Dong, Meichen
    Jin, Zhou
    Liu, Weifeng
    Tan, Guangming
    2021 IEEE 35TH INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM (IPDPS), 2021, : 68 - 78