Acceleration of Sparse Vector Autoregressive Modeling using GPUs

被引:0
|
作者
Venkataramanan, Shreenivas Bharadwaj [1 ]
Garg, Rahul [2 ]
Sabharwal, Yogish [3 ]
机构
[1] Univ Calif San Diego, Comp Sci & Engn, La Jolla, CA 92093 USA
[2] Indian Inst Technol, New Delhi, India
[3] IBM Res India, New Delhi, India
关键词
MULTIVARIATE TIME-SERIES; PREDICTION; REGRESSION; SELECTION; PARALLEL;
D O I
10.1109/HiPC.2019.00029
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Autoregressive modeling is a standard approach to mathematically describe the behavior of a time series. The vector autoregressive model (VAR) describes the behavior of multiple time series. The VAR modeling is a fundamental approach which has applications in multiple domains such as time series forecasting, Granger causality, system identification and stochastic control. Solving high dimensional VAR model requires the use of sparse regression techniques from machine learning. Efficient algorithms to solve the sparse regression problems are too slow to be useful in solving large high dimensional sparse VAR modeling problems. Earlier application of sparse VAR modeling in the neuroimaging domain required the use of the IBMs Blue Gene supercomputers. In this paper we describe an approach to accelerate large scale sparse VAR problems when solved using the lasso regression algorithm on state-of-the-art GPUs. Our accelerated implementation on NVIDIA GTX 1080 GPU takes a few seconds to solve the problem, reaching up to 4 TFLOPs of single-precision performance which is close to 55% of its peak matrix-multiply (GEMM) performance.
引用
收藏
页码:163 / 172
页数:10
相关论文
共 50 条
  • [1] Sparse Vector Autoregressive Modeling
    Davis, Richard A.
    Zang, Pengfei
    Zheng, Tian
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2016, 25 (04) : 1077 - 1096
  • [2] Sparse vector heterogeneous autoregressive modeling for realized volatility
    Baek, Changryong
    Park, Minsu
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2021, 50 (02) : 495 - 510
  • [3] Sparse seasonal seasonal and periodic vector autoregressive modeling
    Baek, Changryong
    Davis, Richard A.
    Pipiras, Vladas
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2017, 106 : 103 - 126
  • [4] Sparse vector heterogeneous autoregressive modeling for realized volatility
    Changryong Baek
    Minsu Park
    Journal of the Korean Statistical Society, 2021, 50 : 495 - 510
  • [5] Filtered Coupling Measures for Variable Selection in Sparse Vector Autoregressive Modeling
    Lee, Seungkyu
    Baek, Changryong
    KOREAN JOURNAL OF APPLIED STATISTICS, 2015, 28 (05) : 871 - 883
  • [6] Modeling gene expression regulatory networks with the sparse vector autoregressive model
    Fujita, Andre
    Sato, Joao R.
    Garay-Malpartida, Humberto M.
    Yamaguchi, Rui
    Miyano, Satoru
    Sogayar, Mari C.
    Ferreira, Carlos E.
    BMC SYSTEMS BIOLOGY, 2007, 1
  • [7] MODELING RAINFALL USING SPATIAL VECTOR AUTOREGRESSIVE
    Sumarminingsih, Eni
    INTERNATIONAL JOURNAL OF AGRICULTURAL AND STATISTICAL SCIENCES, 2021, 17 (01): : 21 - 30
  • [8] Age-Coherent Mortality Modeling and Forecasting Using a Constrained Sparse Vector-Autoregressive Model
    Chang, Le
    Shi, Yanlin
    NORTH AMERICAN ACTUARIAL JOURNAL, 2022, 26 (04) : 591 - 609
  • [9] A Performance Modeling and Optimization Analysis Tool for Sparse Matrix-Vector Multiplication on GPUs
    Guo, Ping
    Wang, Liqiang
    Chen, Po
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2014, 25 (05) : 1112 - 1123
  • [10] Optimization of sparse matrix-vector multiplication using reordering techniques on GPUs
    Pichel, Juan C.
    Rivera, Francisco F.
    Fernandez, Marcos
    Rodriguez, Aurelio
    MICROPROCESSORS AND MICROSYSTEMS, 2012, 36 (02) : 65 - 77