Convergence to the maximum process of a fractional Brownian motion with shot noise

被引:4
|
作者
Wang, Yizao [1 ]
机构
[1] Univ Cincinnati, Dept Math Sci, Cincinnati, OH 45221 USA
关键词
Fractional Brownian motion; Perturbed random walk; Invariance principle; Point process; Continuous mapping theorem; Skorohod metric; EXTREMAL PROCESSES; ORDER-STATISTICS; WEAK-CONVERGENCE;
D O I
10.1016/j.spl.2014.03.014
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the maximum process of a random walk with additive independent noise in the form of max(i=1,...,n)(S-i + Y-i). The random walk may have dependent increments, but its sample path is assumed to converge weakly to a fractional Brownian motion. When the largest noise has the same order as the maximal displacement of the random walk, we establish an invariance principle for the maximum process in the Skorohod topology. The limiting process is the maximum process of the fractional Brownian notion with shot noise generated by Poisson point processes. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:33 / 41
页数:9
相关论文
共 50 条
  • [31] Small values of the maximum for the integral of fractional Brownian motion
    Molchan, G
    Khokhlov, A
    JOURNAL OF STATISTICAL PHYSICS, 2004, 114 (3-4) : 923 - 946
  • [32] On the eigenvalue process of a matrix fractional Brownian motion
    Nualart, David
    Perez-Abreu, Victor
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2014, 124 (12) : 4266 - 4282
  • [33] Linear systems with fractional Brownian motion and Gaussian noise
    Grigoriu, Mircea
    PROBABILISTIC ENGINEERING MECHANICS, 2007, 22 (03) : 276 - 284
  • [34] Fractional Brownian Motion and Sheet as White Noise Functionals
    Zhi Yuan HUANG Chu Jin LI Jian Ping WAN Ying WU Department of Mathematics
    Acta Mathematica Sinica(English Series), 2006, 22 (04) : 1183 - 1188
  • [35] Fractional Brownian Motion and Sheet as White Noise Functionals
    Zhi Yuan Huang
    Chu Jin Li
    Jian Ping Wan
    Ying Wu
    Acta Mathematica Sinica, 2006, 22 : 1183 - 1188
  • [36] Fractional Brownian motion and sheet as white noise functionals
    Huang, Zhi Yuan
    Li, Chu Jin
    Wan, Jian Ping
    Wu, Ying
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2006, 22 (04) : 1183 - 1188
  • [37] Fractional Brownian motion approximation based on fractional integration of a white noise
    Chechkin, AV
    Gonchar, VY
    CHAOS SOLITONS & FRACTALS, 2001, 12 (02) : 391 - 398
  • [38] Fractional Brownian motion, fractional Gaussian noise, and Tsallis permutation entropy
    Zunino, L.
    Perez, D. G.
    Kowalski, A.
    Martin, M. T.
    Garavaglia, M.
    Plastino, A.
    Rosso, O. A.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2008, 387 (24) : 6057 - 6068
  • [40] Maximum likelihood estimator for skew Brownian motion: The convergence rate
    Lejay, Antoine
    Mazzonetto, Sara
    SCANDINAVIAN JOURNAL OF STATISTICS, 2024, 51 (02) : 612 - 642