Convergence to the maximum process of a fractional Brownian motion with shot noise

被引:4
|
作者
Wang, Yizao [1 ]
机构
[1] Univ Cincinnati, Dept Math Sci, Cincinnati, OH 45221 USA
关键词
Fractional Brownian motion; Perturbed random walk; Invariance principle; Point process; Continuous mapping theorem; Skorohod metric; EXTREMAL PROCESSES; ORDER-STATISTICS; WEAK-CONVERGENCE;
D O I
10.1016/j.spl.2014.03.014
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the maximum process of a random walk with additive independent noise in the form of max(i=1,...,n)(S-i + Y-i). The random walk may have dependent increments, but its sample path is assumed to converge weakly to a fractional Brownian motion. When the largest noise has the same order as the maximal displacement of the random walk, we establish an invariance principle for the maximum process in the Skorohod topology. The limiting process is the maximum process of the fractional Brownian notion with shot noise generated by Poisson point processes. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:33 / 41
页数:9
相关论文
共 50 条
  • [21] Path integrals for fractional Brownian motion and fractional Gaussian noise
    Meerson, Baruch
    Benichou, Olivier
    Oshanin, Gleb
    PHYSICAL REVIEW E, 2022, 106 (06)
  • [22] Permutation entropy of fractional Brownian motion and fractional Gaussian noise
    Zunino, L.
    Perez, D. G.
    Martin, M. T.
    Garavaglia, M.
    Plastino, A.
    Rosso, O. A.
    PHYSICS LETTERS A, 2008, 372 (27-28) : 4768 - 4774
  • [23] Bubble Entropy of Fractional Gaussian Noise and Fractional Brownian Motion
    Manis, George
    Bodini, Matteo
    Rivolta, Massimo W.
    Sassi, Roberto
    2021 COMPUTING IN CARDIOLOGY (CINC), 2021,
  • [24] ON MULTIVARIATE FRACTIONAL BROWNIAN MOTION AND MULTIVARIATE FRACTIONAL GAUSSIAN NOISE
    Coeurjolly, Jean-Francois
    Amblard, Pierre-Olivier
    Achard, Sophie
    18TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO-2010), 2010, : 1567 - 1571
  • [25] Weak convergence in Besov spaces to fractional Brownian motion
    Boufoussi, B
    Lakhel, EH
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2001, 333 (01): : 39 - 44
  • [26] On the maximum workload of a queue fed by fractional Brownian motion
    Zeevi, AJ
    Glynn, PW
    ANNALS OF APPLIED PROBABILITY, 2000, 10 (04): : 1084 - 1099
  • [27] Distribution of maximum loss of fractional Brownian motion with drift
    Caglar, Mine
    Vardar-Acar, Ceren
    STATISTICS & PROBABILITY LETTERS, 2013, 83 (12) : 2729 - 2734
  • [28] Maximum of a Fractional Brownian Motion: Probabilities of Small Values
    G. M. Molchan
    Communications in Mathematical Physics, 1999, 205 : 97 - 111
  • [29] Small Values of the Maximum for the Integral of Fractional Brownian Motion
    G. Molchan
    A. Khokhlov
    Journal of Statistical Physics, 2004, 114 : 923 - 946
  • [30] Maximum of a fractional Brownian motion: Probabilities of small values
    Molchan, GM
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 205 (01) : 97 - 111