Barcoded bulk QTL mapping reveals highly polygenic and epistatic architecture of complex traits in yeast

被引:26
|
作者
Nguyen Ba, Alex N. [1 ,13 ]
Lawrence, Katherine R. [2 ,3 ,4 ]
Rego-Costa, Artur [1 ]
Gopalakrishnan, Shreyas [1 ,5 ]
Temko, Daniel [6 ,7 ,8 ]
Michor, Franziska [6 ,7 ,8 ,9 ,10 ,11 ]
Desai, Michael M. [1 ,2 ,3 ,12 ]
机构
[1] Harvard Univ, Dept Organism & Evolutionary Biol, Cambridge, MA 02138 USA
[2] Harvard Univ, NSF, Simons Ctr Math & Stat Anal Biol, Cambridge, MA 02138 USA
[3] Harvard Univ, Quantitat Biol Initiat, Cambridge, MA 02138 USA
[4] MIT, Dept Phys, Cambridge, MA USA
[5] Harvard Univ, Dept Mol & Cellular Biol, Cambridge, MA USA
[6] Dana Farber Canc Inst, Dept Data Sci, Boston, MA USA
[7] Harvard TH Chan Sch Publ Hlth, Dept Biostat, Boston, MA USA
[8] Harvard Univ, Dept Stem Cell & Regenerat Biol, Cambridge, MA USA
[9] Dana Farber Canc Inst, Ctr Canc Evolut, Boston, MA USA
[10] Ludwig Ctr Harvard, Boston, MA USA
[11] Broad Inst & Harvard, Cambridge, MA USA
[12] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[13] Univ Toronto Mississauga, Dept Biol, Mississauga, ON, Canada
来源
ELIFE | 2022年 / 11卷
基金
美国国家卫生研究院; 美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
quantitative trait loci; pleiotropy; epistasis; polygenic traits; S; cerevisiae; SINGLE-NUCLEOTIDE RESOLUTION; SACCHAROMYCES-CEREVISIAE; MISSING HERITABILITY; MODEL SELECTION; GENE DISRUPTION; LINEAR-MODEL; DNA; DISSECTION; PREDICTION; SEQUENCE;
D O I
10.7554/eLife.73983
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Mapping the genetic basis of complex traits is critical to uncovering the biological mechanisms that underlie disease and other phenotypes. Genome-wide association studies (GWAS) in humans and quantitative trait locus (QTL) mapping in model organisms can now explain much of the observed heritability in many traits, allowing us to predict phenotype from genotype. However, constraints on power due to statistical confounders in large GWAS and smaller sample sizes in QTL studies still limit our ability to resolve numerous small-effect variants, map them to causal genes, identify pleiotropic effects across multiple traits, and infer non-additive interactions between loci (epistasis). Here, we introduce barcoded bulk quantitative trait locus (BB-QTL) mapping, which allows us to construct, genotype, and phenotype 100,000 offspring of a budding yeast cross, two orders of magnitude larger than the previous state of the art. We use this panel to map the genetic basis of eighteen complex traits, finding that the genetic architecture of these traits involves hundreds of small-effect loci densely spaced throughout the genome, many with widespread pleiotropic effects across multiple traits. Epistasis plays a central role, with thousands of interactions that provide insight into genetic networks. By dramatically increasing sample size, BB-QTL mapping demonstrates the potential of natural variants in high-powered QTL studies to reveal the highly polygenic, pleiotropic, and epistatic architecture of complex traits.
引用
收藏
页数:83
相关论文
共 50 条
  • [41] QTL analysis of proteome and transcriptome variations for dissecting the genetic architecture of complex traits in maize
    L. Consoli
    A. Lefèvre
    M. Zivy
    D. de Vienne
    C. Damerval
    Plant Molecular Biology, 2002, 48 : 575 - 581
  • [42] QTL analysis of proteome and transcriptome variations for dissecting the genetic architecture of complex traits in maize
    Consoli, L
    Lefèvre, A
    Zivy, M
    de Vienne, D
    Damerval, C
    PLANT MOLECULAR BIOLOGY, 2002, 48 (05) : 575 - 581
  • [43] Genetic architecture of sensory exploitation: QTL mapping of female and male receiver traits in an acoustic moth
    Alem, S.
    Streiff, R.
    Courtois, B.
    Zenboudji, S.
    Limousin, D.
    Greenfield, M. D.
    JOURNAL OF EVOLUTIONARY BIOLOGY, 2013, 26 (12) : 2581 - 2596
  • [44] Mapping of QTL associated with Fusarium root rot resistance and root architecture traits in black beans
    Timothy Nakedde
    Francisco J. Ibarra-Perez
    Clare Mukankusi
    J. Giles Waines
    James D. Kelly
    Euphytica, 2016, 212 : 51 - 63
  • [45] Mapping of QTL associated with Fusarium root rot resistance and root architecture traits in black beans
    Nakedde, Timothy
    Ibarra-Perez, Francisco J.
    Mukankusi, Clare
    Waines, J. Giles
    Kelly, James D.
    EUPHYTICA, 2016, 212 (01) : 51 - 63
  • [46] Genome-wide association studies reveals polygenic genetic architecture of litter traits in Duroc pigs
    Ding, Rongrong
    Qiu, Yibin
    Zhuang, Zhanwei
    Ruan, Donglin
    Wu, Jie
    Zhou, Shenping
    Ye, Jian
    Cao, Lu
    Hong, Linjun
    Xu, Zheng
    Zheng, Enqin
    Li, Zicong
    Wu, Zhenfang
    Yang, Jie
    THERIOGENOLOGY, 2021, 173 : 269 - 278
  • [47] High-Throughput Phenotyping and QTL Mapping Reveals the Genetic Architecture of Maize Plant Growth
    Zhang, Xuehai
    Huang, Chenglong
    Wu, Di
    Qiao, Feng
    Li, Wenqiang
    Duan, Lingfeng
    Wang, Ke
    Xiao, Yingjie
    Chen, Guoxing
    Liu, Qian
    Xiong, Lizhong
    Yang, Wanneng
    Yan, Jianbing
    PLANT PHYSIOLOGY, 2017, 173 (03) : 1554 - 1564
  • [48] QTL mapping reveals predominantly nonadditive genetic architecture of heterotic growth traits in yearling Pacific oysters Crassostrea gigas (vol 596, 741892, 2025)
    Yin, Xiaoshen
    Hedgecock, Dennis
    AQUACULTURE, 2025, 602
  • [49] QTLNetwork: mapping and visualizing genetic architecture of complex traits in experimental populations
    Yang, Jian
    Hu, Chengcheng
    Hu, Han
    Yu, Rongdong
    Xia, Zhen
    Ye, Xiuzi
    Zhu, Jun
    BIOINFORMATICS, 2008, 24 (05) : 721 - 723
  • [50] QTL mapping reveals key factors related to the isoflavone contents and agronomic traits of soybean (Glycine max)
    Kim, Jung Min
    Seo, Ji Su
    Lee, Jeong Woo
    Lyu, Jae Il
    Ryu, Jaihyunk
    Eom, Seok Hyun
    Ha, Bo-Keun
    Kwon, Soon-Jae
    BMC PLANT BIOLOGY, 2023, 23 (01)