Barcoded bulk QTL mapping reveals highly polygenic and epistatic architecture of complex traits in yeast

被引:26
|
作者
Nguyen Ba, Alex N. [1 ,13 ]
Lawrence, Katherine R. [2 ,3 ,4 ]
Rego-Costa, Artur [1 ]
Gopalakrishnan, Shreyas [1 ,5 ]
Temko, Daniel [6 ,7 ,8 ]
Michor, Franziska [6 ,7 ,8 ,9 ,10 ,11 ]
Desai, Michael M. [1 ,2 ,3 ,12 ]
机构
[1] Harvard Univ, Dept Organism & Evolutionary Biol, Cambridge, MA 02138 USA
[2] Harvard Univ, NSF, Simons Ctr Math & Stat Anal Biol, Cambridge, MA 02138 USA
[3] Harvard Univ, Quantitat Biol Initiat, Cambridge, MA 02138 USA
[4] MIT, Dept Phys, Cambridge, MA USA
[5] Harvard Univ, Dept Mol & Cellular Biol, Cambridge, MA USA
[6] Dana Farber Canc Inst, Dept Data Sci, Boston, MA USA
[7] Harvard TH Chan Sch Publ Hlth, Dept Biostat, Boston, MA USA
[8] Harvard Univ, Dept Stem Cell & Regenerat Biol, Cambridge, MA USA
[9] Dana Farber Canc Inst, Ctr Canc Evolut, Boston, MA USA
[10] Ludwig Ctr Harvard, Boston, MA USA
[11] Broad Inst & Harvard, Cambridge, MA USA
[12] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[13] Univ Toronto Mississauga, Dept Biol, Mississauga, ON, Canada
来源
ELIFE | 2022年 / 11卷
基金
美国国家卫生研究院; 美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
quantitative trait loci; pleiotropy; epistasis; polygenic traits; S; cerevisiae; SINGLE-NUCLEOTIDE RESOLUTION; SACCHAROMYCES-CEREVISIAE; MISSING HERITABILITY; MODEL SELECTION; GENE DISRUPTION; LINEAR-MODEL; DNA; DISSECTION; PREDICTION; SEQUENCE;
D O I
10.7554/eLife.73983
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Mapping the genetic basis of complex traits is critical to uncovering the biological mechanisms that underlie disease and other phenotypes. Genome-wide association studies (GWAS) in humans and quantitative trait locus (QTL) mapping in model organisms can now explain much of the observed heritability in many traits, allowing us to predict phenotype from genotype. However, constraints on power due to statistical confounders in large GWAS and smaller sample sizes in QTL studies still limit our ability to resolve numerous small-effect variants, map them to causal genes, identify pleiotropic effects across multiple traits, and infer non-additive interactions between loci (epistasis). Here, we introduce barcoded bulk quantitative trait locus (BB-QTL) mapping, which allows us to construct, genotype, and phenotype 100,000 offspring of a budding yeast cross, two orders of magnitude larger than the previous state of the art. We use this panel to map the genetic basis of eighteen complex traits, finding that the genetic architecture of these traits involves hundreds of small-effect loci densely spaced throughout the genome, many with widespread pleiotropic effects across multiple traits. Epistasis plays a central role, with thousands of interactions that provide insight into genetic networks. By dramatically increasing sample size, BB-QTL mapping demonstrates the potential of natural variants in high-powered QTL studies to reveal the highly polygenic, pleiotropic, and epistatic architecture of complex traits.
引用
收藏
页数:83
相关论文
共 50 条
  • [31] Dissection of quantitative traits by bulk segregant mapping in a protoploid yeast species
    Sigwalt, Anastasie
    Caradec, Claudia
    Brion, Christian
    Hou, Jing
    de Montigny, Jacky
    Jung, Paul
    Fischer, Gilles
    Llorente, Bertrand
    Friedrich, Anne
    Schacherer, Joseph
    FEMS YEAST RESEARCH, 2016, 16 (05)
  • [32] Genetic architecture of maize yield traits dissected by QTL mapping and GWAS in maize
    Xiao Zhang
    Zhiyong Ren
    Bowen Luo
    Haixu Zhong
    Peng Ma
    Hongkai Zhang
    Hongmei Hu
    Yikai Wang
    Haiying Zhang
    Dan Liu
    Ling Wu
    Zhi Nie
    Yonghui Zhu
    Wenzhu He
    Suzhi Zhang
    Shunzong Su
    Yaou Shen
    Shibin Gao
    The Crop Journal, 2022, 10 (02) : 436 - 446
  • [33] Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa
    Zhao, Keyan
    Tung, Chih-Wei
    Eizenga, Georgia C.
    Wright, Mark H.
    Ali, M. Liakat
    Price, Adam H.
    Norton, Gareth J.
    Islam, M. Rafiqul
    Reynolds, Andy
    Mezey, Jason
    McClung, Anna M.
    Bustamante, Carlos D.
    McCouch, Susan R.
    NATURE COMMUNICATIONS, 2011, 2
  • [34] Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa
    Keyan Zhao
    Chih-Wei Tung
    Georgia C. Eizenga
    Mark H. Wright
    M. Liakat Ali
    Adam H. Price
    Gareth J. Norton
    M. Rafiqul Islam
    Andy Reynolds
    Jason Mezey
    Anna M. McClung
    Carlos D. Bustamante
    Susan R. McCouch
    Nature Communications, 2
  • [35] Mapping the genetic architecture of complex traits in experimental populations
    Yang, Jian
    Zhu, Jun
    Williams, Robert W.
    BIOINFORMATICS, 2007, 23 (12) : 1527 - 1536
  • [36] Characterizing the polygenic architecture of complex traits in populations of East Asian and European descent
    Antonella De Lillo
    Frank R. Wendt
    Gita A. Pathak
    Renato Polimanti
    Human Genomics, 17
  • [37] Characterizing the polygenic architecture of complex traits in populations of East Asian and European descent
    De Lillo, Antonella
    Wendt, Frank R.
    Pathak, Gita A.
    Polimanti, Renato
    HUMAN GENOMICS, 2023, 17 (01)
  • [38] Uncovering the genetic architecture of Colletotrichum lindemuthianum resistance through QTL mapping and epistatic interaction analysis in common bean
    Gonzalez, Ana M.
    Yuste-Lisbona, Fernando J.
    Paula Rodino, A.
    De Ron, Antonio M.
    Capel, Carmen
    Garcia-Alcazar, Manuel
    Lozano, Rafael
    Santalla, Marta
    FRONTIERS IN PLANT SCIENCE, 2015, 6
  • [39] QTL analysis reveals a complex genetic basis for emotionality traits in rats.
    Mormède, P
    Ramos, A
    Mormède, C
    Chaouloff, F
    Moisan, MP
    AMERICAN JOURNAL OF MEDICAL GENETICS, 1998, 81 (06): : 472 - 472
  • [40] An Ultrahigh-Dimensional Mapping Model of High-order Epistatic Networks for Complex Traits
    Gosik, Kirk
    Sun, Lidan
    Chinchilli, Vernon M.
    Wu, Rongling
    CURRENT GENOMICS, 2018, 19 (05) : 384 - 394