Barcoded bulk QTL mapping reveals highly polygenic and epistatic architecture of complex traits in yeast

被引:26
|
作者
Nguyen Ba, Alex N. [1 ,13 ]
Lawrence, Katherine R. [2 ,3 ,4 ]
Rego-Costa, Artur [1 ]
Gopalakrishnan, Shreyas [1 ,5 ]
Temko, Daniel [6 ,7 ,8 ]
Michor, Franziska [6 ,7 ,8 ,9 ,10 ,11 ]
Desai, Michael M. [1 ,2 ,3 ,12 ]
机构
[1] Harvard Univ, Dept Organism & Evolutionary Biol, Cambridge, MA 02138 USA
[2] Harvard Univ, NSF, Simons Ctr Math & Stat Anal Biol, Cambridge, MA 02138 USA
[3] Harvard Univ, Quantitat Biol Initiat, Cambridge, MA 02138 USA
[4] MIT, Dept Phys, Cambridge, MA USA
[5] Harvard Univ, Dept Mol & Cellular Biol, Cambridge, MA USA
[6] Dana Farber Canc Inst, Dept Data Sci, Boston, MA USA
[7] Harvard TH Chan Sch Publ Hlth, Dept Biostat, Boston, MA USA
[8] Harvard Univ, Dept Stem Cell & Regenerat Biol, Cambridge, MA USA
[9] Dana Farber Canc Inst, Ctr Canc Evolut, Boston, MA USA
[10] Ludwig Ctr Harvard, Boston, MA USA
[11] Broad Inst & Harvard, Cambridge, MA USA
[12] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[13] Univ Toronto Mississauga, Dept Biol, Mississauga, ON, Canada
来源
ELIFE | 2022年 / 11卷
基金
美国国家卫生研究院; 美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
quantitative trait loci; pleiotropy; epistasis; polygenic traits; S; cerevisiae; SINGLE-NUCLEOTIDE RESOLUTION; SACCHAROMYCES-CEREVISIAE; MISSING HERITABILITY; MODEL SELECTION; GENE DISRUPTION; LINEAR-MODEL; DNA; DISSECTION; PREDICTION; SEQUENCE;
D O I
10.7554/eLife.73983
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Mapping the genetic basis of complex traits is critical to uncovering the biological mechanisms that underlie disease and other phenotypes. Genome-wide association studies (GWAS) in humans and quantitative trait locus (QTL) mapping in model organisms can now explain much of the observed heritability in many traits, allowing us to predict phenotype from genotype. However, constraints on power due to statistical confounders in large GWAS and smaller sample sizes in QTL studies still limit our ability to resolve numerous small-effect variants, map them to causal genes, identify pleiotropic effects across multiple traits, and infer non-additive interactions between loci (epistasis). Here, we introduce barcoded bulk quantitative trait locus (BB-QTL) mapping, which allows us to construct, genotype, and phenotype 100,000 offspring of a budding yeast cross, two orders of magnitude larger than the previous state of the art. We use this panel to map the genetic basis of eighteen complex traits, finding that the genetic architecture of these traits involves hundreds of small-effect loci densely spaced throughout the genome, many with widespread pleiotropic effects across multiple traits. Epistasis plays a central role, with thousands of interactions that provide insight into genetic networks. By dramatically increasing sample size, BB-QTL mapping demonstrates the potential of natural variants in high-powered QTL studies to reveal the highly polygenic, pleiotropic, and epistatic architecture of complex traits.
引用
收藏
页数:83
相关论文
共 50 条
  • [1] Dynamic and epistatic QTL mapping reveals the complex genetic architecture of waterlogging tolerance in chrysanthemum
    Jiangshuo Su
    Xincheng Yang
    Fei Zhang
    Shaofang Wu
    Siyi Xiong
    Liming Shi
    Zhiyong Guan
    Weimin Fang
    Fadi Chen
    Planta, 2018, 247 : 899 - 924
  • [2] Dynamic and epistatic QTL mapping reveals the complex genetic architecture of waterlogging tolerance in chrysanthemum
    Su, Jiangshuo
    Yang, Xincheng
    Zhang, Fei
    Wu, Shaofang
    Xiong, Siyi
    Shi, Liming
    Guan, Zhiyong
    Fang, Weimin
    Chen, Fadi
    PLANTA, 2018, 247 (04) : 899 - 924
  • [3] Assessing the complex architecture of polygenic traits in diverged yeast populations
    Cubillos, Francisco A.
    Billi, Eleonora
    Zorgo, Eniko
    Parts, Leopold
    Fargier, Patrick
    Omholt, Stig
    Blomberg, Anders
    Warringer, Jonas
    Louis, Edward J.
    Liti, Gianni
    MOLECULAR ECOLOGY, 2011, 20 (07) : 1401 - 1413
  • [4] The contribution of epistatic pleiotropy to the genetic architecture of covariation among polygenic traits in mice
    Wolf, Jason B.
    Pomp, Daniel
    Eisen, Eugene J.
    Cheverud, James M.
    Leamy, Larry J.
    EVOLUTION & DEVELOPMENT, 2006, 8 (05) : 468 - 476
  • [5] Brain Connectome Mapping of Complex Human Traits and Their Polygenic Architecture Using Machine Learning
    Maglanoc, Luigi A.
    Kaufmann, Tobias
    van der Meer, Dennis
    Marquand, Andre F.
    Wolfers, Thomas
    Jonassen, Rune
    Hilland, Eva
    Andreassen, Ole A.
    Landro, Nils Inge
    Westlye, Lars T.
    BIOLOGICAL PSYCHIATRY, 2020, 87 (08) : 717 - 726
  • [6] Multi-QTL Mapping for Quantitative Traits Using Epistatic Distorted Markers
    Xie, Shang-Qian
    Wen, Jia
    Zhang, Yuan-Ming
    PLOS ONE, 2013, 8 (07):
  • [7] Simultaneous mapping of epistatic QTL in chickens reveals clusters of QTL pairs with similar genetic effects on growth
    Carlborg, R
    Hocking, PM
    Burt, DW
    Haley, CS
    GENETICAL RESEARCH, 2004, 83 (03) : 197 - 209
  • [8] Influence of outliers on QTL mapping for complex traits
    Hayat, Yousaf
    Yang, Jian
    Xu, Hai-ming
    Zhu, Jun
    JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE B, 2008, 9 (12): : 931 - 937
  • [9] Influence of outliers on QTL mapping for complex traits
    Yousaf Hayat
    Jian Yang
    Hai-ming Xu
    Jun Zhu
    Journal of Zhejiang University SCIENCE B, 2008, 9 : 931 - 937
  • [10] Influence of outliers on QTL mapping for complex traits
    Yousaf HAYAT
    Journal of Zhejiang University(Science B:An International Biomedicine & Biotechnology Journal), 2008, (12) : 931 - 937