Ambient RF Energy-Harvesting Technologies for Self-Sustainable Standalone Wireless Sensor Platforms

被引:487
|
作者
Kim, Sangkil [1 ]
Vyas, Rushi [1 ]
Bito, Jo [1 ]
Niotaki, Kyriaki [2 ]
Collado, Ana [2 ]
Georgiadis, Apostolos [2 ]
Tentzeris, Manos M. [1 ]
机构
[1] Georgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA 30332 USA
[2] CTTC, Castelldefels 08860, Spain
基金
美国国家科学基金会;
关键词
Ambient energy harvesting; autonomous sensors; charge pump; digital TV; dual-band rectenna; embedded microcontroller; energy harvesting; power scavenging; radio-frequency (RF) energy harvesting; RF-dc conversion; ultrahigh frequency (UHF); voltage multiplier; wireless power; POWER; RECTENNA; DESIGN; EFFICIENCY; BAND; NETWORKS; SYSTEM; TAG;
D O I
10.1109/JPROC.2014.2357031
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, various ambient energy-harvesting technologies (solar, thermal, wireless, and piezoelectric) are reviewed in detail and their applicability in the development of self-sustaining wireless platforms is discussed. Specifically, farfield low-power-density energy-harvesting technology is thoroughly investigated and a benchmarking prototype of an embedded microcontroller-enabled sensor platform has been successfully powered by an ambient ultrahigh-frequency (UHF) digital TV signal (512-566 MHz) where a broadcasting antenna is 6.3 km away from the proposed wireless energy-harvesting device. A high-efficiency dual-band ambient energy harvester at 915 MHz and 2.45 GHz and an energy harvester for on-body application at 460 MHz are also presented to verify the capabilities of ambient UHF/RF energy harvesting as an enabling technology for Internet of Things and smart skins applications.
引用
收藏
页码:1649 / 1666
页数:18
相关论文
共 50 条
  • [21] Energy Prediction for Energy-Harvesting Wireless Sensor: A Systematic Mapping Study
    Yuan, Zhenbo
    Ge, Yongqi
    Wei, Jiayuan
    Yuan, Shuhua
    Liu, Rui
    Mo, Xian
    ELECTRONICS, 2023, 12 (20)
  • [22] A Novel CMOS RF Energy Harvester for Self-Sustainable Applications
    Biswas, Arka
    Hamidi, S. Babak
    Biswas, Chitralekha
    Roy, Palash
    Mitra, Dipankar
    Dawn, Debasis
    2018 IEEE 19TH WIRELESS AND MICROWAVE TECHNOLOGY CONFERENCE (WAMICON), 2018,
  • [23] An intelligent solar energy-harvesting system for wireless sensor networks
    Yin Li
    Ronghua Shi
    EURASIP Journal on Wireless Communications and Networking, 2015
  • [24] An intelligent solar energy-harvesting system for wireless sensor networks
    Li, Yin
    Shi, Ronghua
    EURASIP JOURNAL ON WIRELESS COMMUNICATIONS AND NETWORKING, 2015, : 1 - 12
  • [25] Data retrieval time for energy-harvesting wireless sensor networks
    Mitici, Mihaela
    Goseling, Jasper
    de Graaf, Maurits
    Boucherie, Richard J.
    AD HOC NETWORKS, 2016, 53 : 32 - 40
  • [26] Efficient Node Localization in Energy-Harvesting Wireless Sensor Networks
    El Assaf, Ahmad
    Zaidi, Slim
    Affes, Sofiene
    Kandil, Nahi
    2015 IEEE INTERNATIONAL CONFERENCE ON UBIQUITOUS WIRELESS BROADBAND (ICUWB), 2015,
  • [27] Multi-band Ambient RF Energy Harvesting Rectifier for Autonomous Wireless Sensor Networks
    Ngo Tung
    PROCEEDINGS OF THE 2016 IEEE REGION 10 CONFERENCE (TENCON), 2016, : 3736 - 3739
  • [28] Wireless Information and Energy Provision with Practical Modulation in Energy Self-Sustainable Wireless Networks
    Hu, Jie
    Zhang, Li
    Yu, Qin
    Yang, Kun
    2020 16TH INTERNATIONAL CONFERENCE ON MOBILITY, SENSING AND NETWORKING (MSN 2020), 2020, : 488 - 495
  • [29] Self-Sustainable Robotic Environment Discovery for Energy Harvesting Internet of Things
    Cheng, Yen-Kai
    Chang, Ronald Y.
    2017 IEEE 85TH VEHICULAR TECHNOLOGY CONFERENCE (VTC SPRING), 2017,
  • [30] Harvesting hydraulic energy for self-sustainable IoT flow measurement devices
    Vijayaregunathan, Niveathasaro
    Periyasamy, Vijayarajan
    Munimathan, Arunkumar
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2024, 46 (01) : 5094 - 5111