Missing data in kernel PCA

被引:0
|
作者
Sanguinetti, Guido [1 ]
Lawrence, Neil D. [1 ]
机构
[1] Univ Sheffield, Dept Comp Sci, Sheffield S1 4DP, S Yorkshire, England
来源
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Kernel Principal Component Analysis (KPCA) is a widely used technique for visualisation and feature extraction. Despite its success and flexibility, the lack of a probabilistic interpretation means that some problems, such as handling missing or corrupted data, are very hard to deal with. In this paper we exploit the probabilistic interpretation of linear PCA together with recent results on latent variable models in Gaussian Processes in order to introduce an objective function for KPCA. This in turn allows a principled approach to the missing data problem. Furthermore, this new approach can be extended to reconstruct corrupted test data using fixed kernel feature extractors. The experimental results show strong improvements over widely used heuristics.
引用
收藏
页码:751 / 758
页数:8
相关论文
共 50 条
  • [31] A kernel PLS based classification method with missing data handling
    Thuy Tuong Nguyen
    Tsoy, Yury
    [J]. STATISTICAL PAPERS, 2017, 58 (01) : 211 - 225
  • [32] A kernel PLS based classification method with missing data handling
    Thuy Tuong Nguyen
    Yury Tsoy
    [J]. Statistical Papers, 2017, 58 : 211 - 225
  • [33] Support Vector Regression With Kernel Combination for Missing Data Reconstruction
    Lorenzi, Luca
    Mercier, Gregoire
    Melgani, Farid
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2013, 10 (02) : 367 - 371
  • [34] The kernel PCA algorithms for wide data .1. Theory and algorithms
    Wu, W
    Massart, DL
    deJong, S
    [J]. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 1997, 36 (02) : 165 - 172
  • [35] Handling missing values in kernel methods with application to microbiology data
    Belanche, Lluis A.
    Kobayashi, Vladimer
    Aluja, Tomas
    [J]. NEUROCOMPUTING, 2014, 141 : 110 - 116
  • [36] Kernel-based multi-imputation for missing data
    Zhang, Shichao
    Qin, Yongsong
    Zhu, Xiaofeng
    Zhang, Jilian
    Zhang, Chengqi
    [J]. ADVANCES IN INTELLIGENT IT: ACTIVE MEDIA TECHNOLOGY 2006, 2006, 138 : 106 - +
  • [37] Mining Gene Expression Profile with Missing Values: A Integration of Kernel PCA and Robust Singular Values Decomposition
    Islam, Md Saimul
    Hoque, Md Aminul
    Islam, Md Sahidul
    Ali, Mohammad
    Hossen, Md Bipul
    Binyamin, Md
    Merican, Amir Feisal
    Akazawa, Kohei
    Kumar, Nishith
    Sugimoto, Masahiro
    [J]. CURRENT BIOINFORMATICS, 2019, 14 (01) : 78 - 89
  • [38] RKF-PCA: Robust kernel fuzzy PCA
    Heo, Gyeongyong
    Gader, Paul
    Frigui, Hichem
    [J]. NEURAL NETWORKS, 2009, 22 (5-6) : 642 - 650
  • [39] Stochastic Optimization for Kernel PCA
    Zhang, Lijun
    Yang, Tianbao
    Yi, Jinfeng
    Jin, Rong
    Zhou, Zhi-Hua
    [J]. THIRTIETH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2016, : 2316 - 2322
  • [40] An approximate version of kernel PCA
    Martin, Shawn
    [J]. ICMLA 2006: 5TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS, PROCEEDINGS, 2006, : 239 - 244