Missing data in kernel PCA

被引:0
|
作者
Sanguinetti, Guido [1 ]
Lawrence, Neil D. [1 ]
机构
[1] Univ Sheffield, Dept Comp Sci, Sheffield S1 4DP, S Yorkshire, England
来源
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Kernel Principal Component Analysis (KPCA) is a widely used technique for visualisation and feature extraction. Despite its success and flexibility, the lack of a probabilistic interpretation means that some problems, such as handling missing or corrupted data, are very hard to deal with. In this paper we exploit the probabilistic interpretation of linear PCA together with recent results on latent variable models in Gaussian Processes in order to introduce an objective function for KPCA. This in turn allows a principled approach to the missing data problem. Furthermore, this new approach can be extended to reconstruct corrupted test data using fixed kernel feature extractors. The experimental results show strong improvements over widely used heuristics.
引用
收藏
页码:751 / 758
页数:8
相关论文
共 50 条
  • [21] Dynamical components analysis of fMRI data through kernel PCA
    Thirion, B
    Faugeras, O
    [J]. NEUROIMAGE, 2003, 20 (01) : 34 - 49
  • [22] SUBSPACE DETECTION IN A KERNEL SPACE: THE MISSING DATA CASE
    Wu, Tong
    Bajwa, Waheed U.
    [J]. 2014 IEEE WORKSHOP ON STATISTICAL SIGNAL PROCESSING (SSP), 2014, : 93 - 96
  • [23] Kernel classification with missing data and the choice of smoothing parameters
    Demirdjian, Levon
    Mojirsheibani, Majid
    [J]. STATISTICAL PAPERS, 2019, 60 (05) : 1487 - 1513
  • [24] Recursive kernel density estimators under missing data
    Slaoui, Yousri
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (18) : 9101 - 9125
  • [25] KERNEL DENSITY ESTIMATION WITH MISSING DATA AND AUXILIARY VARIABLES
    Dubnicka, Suzanne R.
    [J]. AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2009, 51 (03) : 247 - 270
  • [26] Missing Intensity Interpolation Using a Kernel PCA-Based POCS Algorithm and its Applications
    Ogawa, Takahiro
    Haseyama, Miki
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2011, 20 (02) : 417 - 432
  • [27] Islanding Detection Based on Probabilistic PCA with Missing Values in PMU Data
    Liu, Xueqin
    Laverty, David
    Best, Robert
    [J]. 2014 IEEE PES GENERAL MEETING - CONFERENCE & EXPOSITION, 2014,
  • [28] Robust probabilistic PCA with missing data and contribution analysis for outlier detection
    Chen, Tao
    Martin, Elaine
    Montague, Gary
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2009, 53 (10) : 3706 - 3716
  • [29] PCA model building with missing data: New proposals and a comparative study
    Folch-Fortuny, A.
    Arteaga, F.
    Ferrer, A.
    [J]. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2015, 146 : 77 - 88
  • [30] Missing data methods in PCA and PLS: Score calculations with incomplete observations
    Nelson, PRC
    Taylor, PA
    MacGregor, JF
    [J]. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 1996, 35 (01) : 45 - 65