Missing data in kernel PCA

被引:0
|
作者
Sanguinetti, Guido [1 ]
Lawrence, Neil D. [1 ]
机构
[1] Univ Sheffield, Dept Comp Sci, Sheffield S1 4DP, S Yorkshire, England
来源
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Kernel Principal Component Analysis (KPCA) is a widely used technique for visualisation and feature extraction. Despite its success and flexibility, the lack of a probabilistic interpretation means that some problems, such as handling missing or corrupted data, are very hard to deal with. In this paper we exploit the probabilistic interpretation of linear PCA together with recent results on latent variable models in Gaussian Processes in order to introduce an objective function for KPCA. This in turn allows a principled approach to the missing data problem. Furthermore, this new approach can be extended to reconstruct corrupted test data using fixed kernel feature extractors. The experimental results show strong improvements over widely used heuristics.
引用
收藏
页码:751 / 758
页数:8
相关论文
共 50 条
  • [1] Kernel PCA Regression for Missing Data Estimation in DNA Microarray Analysis
    Shan, Ying
    Deng, Guang
    [J]. ISCAS: 2009 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS 1-5, 2009, : 1477 - 1480
  • [2] INFERENCE FOR HETEROSKEDASTIC PCA WITH MISSING DATA
    Yan, Yuling
    Chen, Yuxin
    Fan, Jianqing
    [J]. ANNALS OF STATISTICS, 2024, 52 (02): : 729 - 756
  • [3] Kernel Density Estimation with Missing Data: Misspecifying the Missing Data Mechanism
    Dubnicka, Suzanne R.
    [J]. NONPARAMETRIC STATISTICS AND MIXTURE MODELS: A FESTSCHRIFT IN HONOR OF THOMAS P HETTMANSPERGER, 2011, : 114 - 135
  • [4] A kernel extension to handle missing data
    Nebot-Troyano, Guillermo
    Belanche-Munoz, Lluis A.
    [J]. RESEARCH AND DEVELOPMENT IN INTELLIGENT SYSTEMS XXVI: INCORPORATING APPLICATIONS AND INNOVATIONS IN INTELLIGENT SYSTEMS XVII, 2010, : 165 - 178
  • [5] ROBUST PCA METHODS FOR COMPLETE AND MISSING DATA
    Karhunen, Juha
    [J]. NEURAL NETWORK WORLD, 2011, 21 (05) : 357 - 392
  • [6] Interpolation of signals with missing data using PCA
    Oliveira, P.
    [J]. 2006 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-13, 2006, : 3279 - 3282
  • [7] Tensor Robust Kernel PCA for Multidimensional Data
    Lin, Jie
    Huang, Ting-Zhu
    Zhao, Xi-Le
    Ji, Teng-Yu
    Zhao, Qibin
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, : 1 - 13
  • [8] Assessment of maximum likelihood PCA missing data imputation
    Folch-Fortuny, Abel
    Arteaga, Francisco
    Ferrer, Alberto
    [J]. JOURNAL OF CHEMOMETRICS, 2016, 30 (07) : 386 - 393
  • [9] Non-linear PCA: a missing data approach
    Scholz, M
    Kaplan, F
    Guy, CL
    Kopka, J
    Selbig, J
    [J]. BIOINFORMATICS, 2005, 21 (20) : 3887 - 3895
  • [10] Streaming PCA and Subspace Tracking: The Missing Data Case
    Balzano, Laura
    Chi, Yuejie
    Lu, Yue M.
    [J]. PROCEEDINGS OF THE IEEE, 2018, 106 (08) : 1293 - 1310