Precision annealing Monte Carlo methods for statistical data assimilation and machine learning

被引:0
|
作者
Fang, Zheng [1 ]
Wong, Adrian S. [1 ]
Hao, Kangbo [1 ]
Ty, Alexander J. A. [1 ]
Abarbanel, Henry D., I [1 ,2 ]
机构
[1] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Marine Phys Lab, Scripps Inst Oceanog, La Jolla, CA 92093 USA
来源
PHYSICAL REVIEW RESEARCH | 2020年 / 2卷 / 01期
关键词
MARKOV-CHAINS; CONVERGENCE; SYSTEM; STATE;
D O I
10.1103/PhysRevResearch.2.013050
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In statistical data assimilation (SDA) and supervised machine learning (ML), we wish to transfer information from observations to a model of the processes underlying those observations. For SDA, the model consists of a set of differential equations that describe the dynamics of a physical system. For ML, the model is usually constructed using other strategies. In this paper, we develop a systematic formulation based on Monte Carlo sampling to achieve such information transfer. Following the derivation of an appropriate target distribution, we present the formulation based on the standard Metropolis-Hasting (MH) procedure and the Hamiltonian Monte Carlo (HMC) method for performing the high-dimensional integrals that appear. To the extensive literature on MH and HMC, we add (1) an annealing method using a hyperparameter that governs the precision of the model to identify and explore the highest probability regions of phase space dominating those integrals, and (2) a strategy for initializing the state-space search. The efficacy of the proposed formulation is demonstrated using a nonlinear dynamical model with chaotic solutions widely used in geophysics.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Monte Carlo Gradient Estimation in Machine Learning
    Mohamed, Shakir
    Rosca, Mihaela
    Figurnov, Michael
    Mnih, Andriy
    JOURNAL OF MACHINE LEARNING RESEARCH, 2020, 21
  • [22] Intelligent interpolation by Monte Carlo machine learning
    Jia, Yongna
    Yu, Siwei
    Ma, Jianwei
    GEOPHYSICS, 2018, 83 (02) : V83 - V97
  • [23] Monte Carlo Gradient Estimation in Machine Learning
    Mohamed, Shakir
    Rosca, Mihaela
    Figurnov, Michael
    Mnih, Andriy
    Journal of Machine Learning Research, 2020, 21
  • [24] Machine Learning Diffusion Monte Carlo Forces
    Huang, Cancan
    Rubenstein, Brenda M.
    JOURNAL OF PHYSICAL CHEMISTRY A, 2023, 127 (01): : 339 - 355
  • [25] Machine Learning Diffusion Monte Carlo Energies
    Ryczko, Kevin
    Krogel, Jaron T.
    Tamblyn, Isaac
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2022, 18 (12) : 7695 - 7701
  • [26] Multiple target tracking using and statistical sequential Monte Carlo methods data association
    Frank, O
    Nieto, J
    Guivant, J
    Scheding, S
    IROS 2003: PROCEEDINGS OF THE 2003 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, VOLS 1-4, 2003, : 2718 - 2723
  • [27] Statistical methods for interpreting Monte Carlo ensemble forecasts
    Stephenson, DB
    Doblas-Reyes, FJ
    TELLUS SERIES A-DYNAMIC METEOROLOGY AND OCEANOGRAPHY, 2000, 52 (03) : 300 - 322
  • [28] Sequential Monte Carlo methods for statistical analysis of tables
    Chen, YG
    Diaconis, P
    Holmes, SR
    Liu, JS
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2005, 100 (469) : 109 - 120
  • [30] Efficient Monte Carlo simulation methods in statistical physics
    Wang, JS
    MONTE CARLO AND QUASI-MONTE CARLO METHODS 2000, 2002, : 141 - 157