Sequential Monte Carlo methods for statistical analysis of tables

被引:148
|
作者
Chen, YG [1 ]
Diaconis, P
Holmes, SR
Liu, JS
机构
[1] Duke Univ, Inst Stat & Decis Sci, Durham, NC 27708 USA
[2] Stanford Univ, Dept Stat, Stanford, CA USA
[3] Harvard Univ, Dept Stat, Cambridge, MA 02138 USA
[4] Harvard Univ, Dept Biostat, Cambridge, MA 02138 USA
基金
美国国家科学基金会;
关键词
conditional inference; contingency table; counting problem; exact test; sequential importance sampling; zero-one table;
D O I
10.1198/016214504000001303
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We describe a sequential importance sampling (SIS) procedure for analyzing two-way zero-one or contingency tables with fixed marginal sums. An essential feature of the new method is that it samples the columns of the table progressively according to certain special distributions. Our method produces Monte Carlo samples that are remarkably close to the uniform distribution, enabling one to approximate closely the null distributions of various test statistics about these tables. Our method compares favorably with other existing Monte Carlo-based algorithms, and sometimes is a few orders of magnitude more efficient. In particular, compared with Markov chain Monte Carlo (MCMC)-based approaches, our importance sampling method not only is more efficient in terms of absolute running time and frees one from pondering over the mixing issue, but also provides an easy and accurate estimate of the total number of tables with fixed marginal sums, which is far more difficult for an MCMC method to achieve.
引用
收藏
页码:109 / 120
页数:12
相关论文
共 50 条
  • [1] MONTE CARLO METHODS - METHODS STATISTICAL TESTING/MONTE CARLO METHOD
    MULLER, ME
    [J]. ANNALS OF MATHEMATICAL STATISTICS, 1966, 37 (02): : 532 - &
  • [2] Nested Sequential Monte Carlo Methods
    Naesseth, Christian A.
    Lindsten, Fredrik
    Schon, Thomas B.
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 37, 2015, 37 : 1292 - 1301
  • [3] Sequential Monte Carlo optimization and statistical inference
    Duan, Jin-Chuan
    Li, Shuping
    Xu, Yaxian
    [J]. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2023, 15 (03)
  • [4] Error analysis of sequential Monte Carlo methods for transport problems
    Kong, R
    Spanier, J
    [J]. MONTE CARLO AND QUASI-MONTE CARLO METHODS 1998, 2000, : 252 - 272
  • [5] Multiple target tracking using and statistical sequential Monte Carlo methods data association
    Frank, O
    Nieto, J
    Guivant, J
    Scheding, S
    [J]. IROS 2003: PROCEEDINGS OF THE 2003 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, VOLS 1-4, 2003, : 2718 - 2723
  • [6] Sequential Monte Carlo methods for diffusion processes
    Jasra, Ajay
    Doucet, Arnaud
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2009, 465 (2112): : 3709 - 3727
  • [7] Sequential Monte Carlo methods for navigation systems
    Sotak, Milos
    [J]. PRZEGLAD ELEKTROTECHNICZNY, 2011, 87 (06): : 249 - 252
  • [8] Properties of marginal sequential Monte Carlo methods
    Crucinio, Francesca R.
    Johansen, Adam M.
    [J]. STATISTICS & PROBABILITY LETTERS, 2023, 203
  • [9] ON THE CONVERGENCE OF ADAPTIVE SEQUENTIAL MONTE CARLO METHODS
    Beskos, Alexandros
    Jasra, Ajay
    Kantas, Nikolas
    Thiery, Alexandre
    [J]. ANNALS OF APPLIED PROBABILITY, 2016, 26 (02): : 1111 - 1146
  • [10] Sequential Monte Carlo Methods for Option Pricing
    Jasra, Ajay
    Del Moral, Pierre
    [J]. STOCHASTIC ANALYSIS AND APPLICATIONS, 2011, 29 (02) : 292 - 316