ParaGlyder: Probe-driven Interactive Visual Analysis for Multiparametric Medical Imaging Data

被引:6
|
作者
Morth, Eric [1 ,2 ]
Haldorsen, Ingfrid S. [2 ,3 ]
Bruckner, Stefan [1 ,2 ]
Smit, Noeska N. [1 ,2 ]
机构
[1] Univ Bergen, Dept Informat, Bergen, Norway
[2] Haukeland Hosp, Mohn Med Imaging & Visualizat Ctr, Bergen, Norway
[3] Univ Bergen, Dept Clin Med, Bergen, Norway
来源
关键词
Medical visualization; Visual analysis; Multiparametric medical imaging data; CONTRAST-ENHANCED MRI; ENDOMETRIAL;
D O I
10.1007/978-3-030-61864-3_29
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Multiparametric imaging in cancer has been shown to be useful for tumor detection and may also depict functional tumor characteristics relevant for clinical phenotypes. However, when confronted with datasets consisting of multiple values per voxel, traditional reading of the imaging series fails to capture complicated patterns. These patterns of potentially important imaging properties of the parameter space may be critical for the analysis, but standard approaches do not deliver sufficient details. Therefore, in this paper, we present an approach that aims to enable the exploration and analysis of such multiparametric studies using an interactive visual analysis application to remedy the trade-offs between details in the value domain and in spatial resolution. This may aid in the discrimination between healthy and cancerous tissue and potentially highlight metastases that evolved from the primary tumor. We conducted an evaluation with eleven domain experts from different fields of research to confirm the utility of our approach.
引用
收藏
页码:351 / 363
页数:13
相关论文
共 50 条
  • [21] Interactive and Collaborative Visual Analysis on Traffic Sensor Data
    Lai, Chufan
    Liu, Qiangqiang
    Feng, Lu
    Yue, Chenglei
    Chen, Xi
    Hu, Yang
    Wang, Zhanyi
    Teng, Pengju
    Yuan, Xiaoru
    2017 IEEE CONFERENCE ON VISUAL ANALYTICS SCIENCE AND TECHNOLOGY (VAST), 2017, : 187 - 188
  • [22] Artificial intelligence structural imaging techniques in visual pattern analysis and medical data understanding
    Ogiela, MR
    Tadeusiewicz, R
    PATTERN RECOGNITION, 2003, 36 (10) : 2441 - 2452
  • [23] Analysis of Functional Luminal Imaging Probe Data
    Gregersen, Hans
    CLINICAL GASTROENTEROLOGY AND HEPATOLOGY, 2017, 15 (08) : 1313 - 1314
  • [24] Interactive Visual Analysis of Complex Scientific Data as Families of Data Surfaces
    Matkovic, Kresimir
    Gracanin, Denis
    Klarin, Borislav
    Hauser, Helwig
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2009, 15 (06) : 1351 - 1358
  • [25] An Interactive System for Processing PMS Two-Dimensional Imaging Probe Data
    Heymsfield, Andrew J.
    Parrish, Joanne L.
    JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 1986, 3 (04) : 734 - 736
  • [26] Interactive Visual Analysis of Mass Spectrometry Imaging Data Using Linear and Non-Linear Embeddings
    Jawad, Muhammad
    Soltwisch, Jens
    Dreisewerd, Klaus
    Linsen, Lars
    INFORMATION, 2020, 11 (12) : 1 - 22
  • [27] Data Analysis Strategies in Medical Imaging
    Parmar, Chintan
    Barry, Joseph D.
    Hosny, Ahmed
    Quackenbush, John
    Aerts, Hugo J. W. L.
    CLINICAL CANCER RESEARCH, 2018, 24 (15) : 3492 - 3499
  • [28] Combining Automated and Interactive Visual Analysis of Biomechanical Motion Data
    Spurlock, Scott
    Chang, Remco
    Wang, Xiaoyu
    Arceneaux, George
    Keefe, Daniel F.
    Souvenir, Richard
    ADVANCES IN VISUAL COMPUTING, PT II, 2010, 6454 : 564 - +
  • [29] Interactive visual analysis of time-series microarray data
    Jeong, Dong Hyun
    Darvish, Alireza
    Najarian, Kayvan
    Yang, Jing
    Ribarsky, William
    VISUAL COMPUTER, 2008, 24 (12): : 1053 - 1066
  • [30] PivotViz: Interactive Visual Analysis of Multidimensional Library Transaction Data
    Nielsen, Matthias
    Gronbaek, Kaj
    PROCEEDINGS OF THE 15TH ACM/IEEE-CS JOINT CONFERENCE ON DIGITAL LIBRARIES (JCDL'15), 2015, : 139 - 142